
www.manaraa.com

Virginia Commonwealth University Virginia Commonwealth University

VCU Scholars Compass VCU Scholars Compass

Theses and Dissertations Graduate School

1985

Designing a Relational Data Base for a Problem Solving Designing a Relational Data Base for a Problem Solving

Environment Environment

Kathryn S. Dawson

Follow this and additional works at: https://scholarscompass.vcu.edu/etd

 Part of the Computer Sciences Commons

© The Author

Downloaded from Downloaded from
https://scholarscompass.vcu.edu/etd/4508

This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has
been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass.
For more information, please contact libcompass@vcu.edu.

http://www.vcu.edu/
http://www.vcu.edu/
https://scholarscompass.vcu.edu/
https://scholarscompass.vcu.edu/etd
https://scholarscompass.vcu.edu/gradschool
https://scholarscompass.vcu.edu/etd?utm_source=scholarscompass.vcu.edu%2Fetd%2F4508&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarscompass.vcu.edu%2Fetd%2F4508&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarscompass.vcu.edu/etd/4508?utm_source=scholarscompass.vcu.edu%2Fetd%2F4508&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu

www.manaraa.com

College of Humanities and sciences
Virginia Commonwealth University

This is to certify that the thesis prepared by
Kathryn s. Dawson entitled Designing a Relational Data
Base for a Problem Solving Environment has been approved
by her commmittee as satisfactory completion of the
thesis requirement for the degree of Master of Science
in Mathematical Sciences/ Computer Science.

Dr. Lorraine M. Parker
Director of Thesis

Committee Member

Director of Graduate Study

Dr. William E. Haver
Department Chairman

Dr. Elske v. P. Smith
Dean, College of Humanities and Science

Date T '

www.manaraa.com

DESIGNING A RELATIONAL DATA BASE FOR A

PROBLEM SOLVING ENVIRONMENT

A thesis submitted in partial fulfillment of the
requirements for the degree of Master

.
of Science

at Virginia Commonwealth University

By

Kathryn s. Dawson

Director: Dr. Lorraine M. Parker
Assistant Professor of Mathematical Sciences

Virginia Commonwealth University

Virginia Commonwealth University
Richmond, Virginia

May, 1985

www.manaraa.com

ACKNOWLEDGEMENT

The author would like to thank her advisor, Dr.

Lorraine Parker for all her excellent advice and

continuing encouragement throughout the preparation of

this document.

The author would also like to thank Dr. Francis

Kane and Dr. Nancy Jacqmin for their valuable editorial

comments and support.

www.manaraa.com

Table of Contents

List of Tables

List of Figures

Abstract

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Introduction

Definition of a Data Base

Interrelated Data
Redundancy Eliminated
Data Independence
Common Controlled Approach
Components of a Data Base System
Advantages • . . • . • . . • . .

Logical View of a Data

Hierarchical
Network
Relational

Base

Advantages of the Relational Model

Physical Design of a Data Base

Storage Space Available
Volatity of a File
Speed of Retrieval
Multiple Indexes
Logical Design

The Relational Data Base Model

Relational Constructs
Relational Algebra
Null and Default Values

Normal Forms

First Normal Form . . . • . .

Functional Dependencies

Page

• • v

.vi

.ix

.1

• 3

. . . • • • 5

.5

....... 6

.a

..... 9

• . 1 6

• 22

.23

.28

. . 32

• • • 36

. 45

.46

.47

• • • 49

. . • 5 1

• • • 52

.55

. • . . 55

.66

.98

. 1 07

. 1 08

....... 109

www.manaraa.com

Second Normal Form • • • • . . • 112

Third Normal Form . • • • . • • • • . . . • . • . • 114

Nonloss Decomposition of Relations • • 116

Boyce/ Codd Normal Form • • • • • • • • • . • • 120

Fourth Normal Form • . • • • • . • . . . • . . . • . . . • • . . 123

Fifth Normal Form • . • . • • . • • • • . . 127

Chapter 7 Development of a Data Base • • • • • • • • • . • . • • • 133

Description of the Problem • . • . . • . . • . . • . . • 133

A Relational Data Base as a Basis for
Scheduling System Design • . . . • • • • • . • • • 13 7

Data Needed to Solve the Problem 139

Constructing the Logical View . • • • • . • . . . • . 145

Verifying the Logical Design • • • • • . . • • • • . . 156

The Physical Design • • • • • • . • . • 165

Design Implementation . . • • . . • . • • • • • • • • 174

Chapter 8 Conclusion . 183

Bibliography . 185

Appendix A Data Dictionary . • • . • • • . . . • • • . . . • • • • 186

Appendix B Implementation Algorithms . . • . • • . . • . . • . . . 194

Vita . 201

iv

www.manaraa.com

List of Tables

Table Page

1. Physical Design Tradeoffs • • . . • . . • . . . • 53

2. Comparison of Execution Times in Seconds on
Various Data Structures . . . • • . • • • • • • • . • 169

www.manaraa.com

List of Figures

Figure Page

1.

2.

3.

4.

5.

6.

7.

a.

9.

HI.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Components of a Data Base System

Logical Record Definition

Hierarchical View of Library Data

Network View of Library Data

Relational View of Library Data

Relation CURRENT EMPLOYEES

LOCATION Relation

PROMOTIONS Relation

Family Information

FAMILY Relation

EDUCATION Relation

PROG Relation

HISTORY Relation

NUMS Relation

LOC Relation

BOTH Relation

YOUNG SON Relation

APPLICANT and AVAILABLE Relations

ALL Relation

SUPERVISORS Relation

INFO Relation

.10

.15

.24

.29

.33

.56

.60

.62

.63

.64

.66

.67

.69

.70

• 71

.73

.75

.77

.78

.80

.81

www.manaraa.com

vii

22. ASSIGNMENTS Relations • • • • 82

23. MORE Relation • . 83

24. RESEARCH and EM RELATIONS Relations • . . • . . • . . • . . • 84

25. BOTH COMM Relation . • • . • • . • • • • • . . • . • . • • . • • • . • • • . • 84

26. CONTRACTS Relation . . . • • . . . • • • • • • . • . . 94

27. CONTRACT2 Relation • • • • • • • • . • . • • • • • • • • . • • • . 94

28. OFFICE Relation • . . . • • . . • • . . • • • . • 95

29. OFFICE2 Relation • . • • • . • . . . • • • • • • . . . • . • . . • • • • 96

30. OP and SURG Relation • . • • . • • . • • . . • . • . • • • • • . • • • . . • 99

31. MAYBE OP Relation . • . . . • • . • . • . . • . . . • • • . . . • • . 100

32. PAT SURG Relation . • • • • • . • • • • . • • . . • • • 101

33. PAT SURG2 Relation . . • • . . • • • • • • . • . . • • . . • • . • . 102

34. SKILLS Relation • • • . • . . . • • • • • • . • . . • . • . • 108

35. CO_INFO Functional Dependency Diagram • • 111

36. Decomposition of CO INFO Relation • . . • • . . • . . 114

37. Decomposition of JOB INFO Relation • . . • • • • 116

38. Alternative Decomposition of JOB INFO • • • • 117

39. Alternative Decomposition of JOB INFO . • • . 118

40. Functional Dependency Diagram for AGNTS
Relation . 121

41. Decomposition of AGNT Relation • . • . • • . . • . . . 122

42. Functional Dependency Diagram for AGNT2
Relation 123

43. Table of Computer Skills • • . • • . . • . • . • 124

44. SKILLS Relation 124

45. AGNT Relation , ... 127

46. Invalid Decomposition of Relation AGNT 128

47. Valid Decomposition of AGNTS • • . . . • • • . . 129

www.manaraa.com

viii

48. Relationships Among Faculty Data Items • . . • 141

49. Relationships Among Classes Data Items 144

50. Relationships Among All Data Items 146

51. Modification of SS# and Time Not Available
Relationship 148

52. Functional Dependencies in FACULTY Relation • • • • 156

53. NOT_AVAIL Functional Dependencies • • 157

54. SCHEDULE Functional Dependencies . . • . . . • . • • • • • . . 157

55. CLASSES Functional Dependencies . • • • . • . • • • • . • • • . 158

56. PERSONAL Functional Dependencies • • . • . • . . • • • • . • • 159

57. Multivalued Dependencies • • . • . • . . • • • • • . . • . • • 161

58. Key Attribute Relationships in SCHEDULE . • • • 162

59. Possible Decomposition of PERSONAL • • • • • • . 163

60. Contents of Data Base Account • • • . • • • • • . • • . • • • • • 175

61. Login Menu • • . • • . • . • • • . • • • • • . . . • . • • • • • . • • . • . • . • • 176

62. Sample PL/ I Program . . • . • • . • . • • • • . • · • • . • . • . 178

www.manaraa.com

Abstract

When chosing a system design in which to solve a

recurring problem which depends on interrelated data a

relational data base environment should be considered.

The original problem can be solved through this design

and by allowing users to view the data in the relational

constructs the data can be easily used in numerous other

applications . Theorical support insures the design is

sound avoiding inaccurate results. Independence between

the logical and physical views of the data enables the

data base administrator to ad j ust the physical data

structures in order to optimize system performance

without affecting existing user applications.

ix

www.manaraa.com

CHAPTER 1

INTRODUCTION

When developing a computer system to solve a

particular problem one consideration is the environment

in which the problem will be solved. If the problem

addresses an issue that will not be reexamined at a

later time the system can be designed so it will

efficiently present the solution to the problem in the

quickest amount of time. If, however, the problem is

such that its solution will be required under a variety

of circumstances the system's design should include a

mechanism whereby data values can be easily updated.

The problem can then be resolved using these new values.

Another consideration could be whether the data

involved in the solution of the problem can be used to

solve other problems. If this is the case the system

should be designed so that the definition of the data

available is understood by all potential users. Also if

additional data items are needed by these new problems

the system ideally should be designed so that this

www.manaraa.com

expansion of the defintion of the data sets will not

corrupt existing applications.

A relational data base system provides an

environment through which a particular problem can be

solved as well as numerous others that rely on the same

data. If a partiular problem requires additional

information the collection of data can be easily

expanded to provide for these new values. While the

initial design of this type of system could take longer

to implement than a system which addresses only the

initial problem, the long term benefits it could provide

offset this consideration.

2

www.manaraa.com

CHAPTER 2

DEFINITION OF A DATA BASE

A data base is a way of organizing and maintaining

information in a computer. Before precisely defining a

data base it is advantageous to consider a situation

where the principles of data base theory are not

employed.

Suppose a small company has a computer available

for its various departments to use. The warehouse

department has developed several programs and files

which supply information about _parts on hand and

ordered. The manufacturing department has developed

their own programs and files which provide information

about parts needed in the manufacturing of each product

line. Of course each department designed their systems

in their own independent ways. The warehouse department

files might be indexed by part number and contain no

information about the product which calls for each part.

The manufacturing department files could be indexed by

3

www.manaraa.com

product number and contain only a character description

of parts needed. Each department's system is

satisfactory for its particular needs. Now suppose that

management wants to do a productivity study that

involves data from both departments. Since the files

used by the two departments are probably incompatible, a

programmer would have to start from the basic level of

building files which will provide the same data as is

now available. At best this will be· a time consuming

task which, if the data had been jointly maintained,

could have been avoided. A more satisfactory approach

would have been to have a centralized system of

organized data files. Each department could be

responsible for updating the data that pertains to its

department and still have the means for maintaining

the types of reports pertinent to its operation. But

now an overall view of all the data would be available

for future unanticipated uses. A system designed to

solve these problems is a data base.

A data base is a collection of interrelated data

stored such that 1) harmful or unnecessary redundancy

is eliminated, 2) applications and user access methods

are independent of the data structures used, and 3) a

common, controlled approach is used to update, delete

and retrieve data
1

•

4

www.manaraa.com

INTERRELATED DATA

When a user is utilizing a large collection of data

it is important to be able to retrieve not only the data

itself but the relationships that exist among data

items
2

• Suppose, for instance, in the small company

example that two files were available, one listing the

numbers of all parts currently stocked and another

listing all products currently being manufactured. What

is missing is a link between these two files which would

inform a user which parts are needed for each product.

Clearly the relationship between the data items stored

is as important as the data itself and should be

represented as well. This can be accomplished in

several ways as will be in seen in Chapter 3.

REDUNDANCY ELIMINATED

Consider again the original small company example

but suppose now that the part number rather than the

part description is recorded in the manufacturing

department's file. In this case the part numbers are

listed in the manufacturing's and warehouse's separately

maintained systems. A high degree of cooperation is

needed, however, between the two departments to insure

that the part numbers are correct in both systems. If

5

www.manaraa.com

the warehouse department decides for instance, to order

a part from another company resulting in a new part

number the manufacturing department must be informed of

this change. If the management of the company asks for

an inventory by part number separate listings could be

made of parts in the warehouse and in the manufacturing
I

departments. The accuracy of the total inventory,

however, depends on having the part numbers correct in

both files. If any changes made in part numbers are not

accurately and quickly recorded in both departments the

integrity of the inventory report will be challenged.

Clear�y the fact that part numbers are stored in

two separately maintained systems jeopardizes the

correctness of any report that relies on their joint

accuracy
3

• In a data base system the elimination of

redundant data is strived for. In cases when this is

not advantageous a mechanism is provided so that the

redundant data is updated simultaneously
4

• This

requires a knowledge of what the redundant data is and a

software mechanism for insuring that a requested update

to this data is made wherever it is listed.

DATA INDEPENDENCE

In order to describe data independence it is

6

www.manaraa.com

helpful to consider data dependence. In the

manufacturing company example each department separately

designed their file structures. The warehouse

department's programmer might have preferred files

indexed by part number. All the programs that access

that file are dependent on that structure. If the

programmer decided later to redesign the data structure

all of the programs that access that file would have to

be updated. This would include programs that simply

generate reports as well as those that are used to

update the file.

Clearly, when a new data structure is called for, a

large amount of time will be needed to modify and test

each application program. Data independence means that

the physical design of the data base can be changed

without modifying the user's view of the data or their

application programs
5

• To meet this criteria a data

base system provides two levels of software. The level

the end user employs is independent of the actual data.

structure used. This can be accomplished through a

second level of software or mapping routines which

interface with the actual physical files though a series

of subroutines. The end user should be oblivious to

this level. The numerous application programs would

call these subroutines in a consistent way. When the

data base designer decides to restructure the data only

these subroutines would have to be modified. The end

7

www.manaraa.com

user's method of accessing the data base would remain

the same, avoiding confusion and time consuming program

updates.

COMMON CONTROLLED APPROACH

In the manufacturing company example each

department's files were designed separately and

independently. Each system would provide methods of

updating and accessing these files but in what could be

very different ways. If an employee of the warehouse

department were to access the manufacturing department's

data a new approach and understanding of the data

structures would be required. For an inexperienced

user this could prove cumbersome. The result is that

valuable information available in one department

would be difficult for personnel in other departments to

access.

A data base system provides a common approach for

all users to employ in order to access and modify data
6

•

In this way information pertinent to one department can

be available without difficulty to any authorized user.

Of course some data must be protected. For instance if

the personnel department had a file containing employee

salaries they would not want this information to be

accessible to all users. Similarly, only authorized

8

www.manaraa.com

employees should be allowed to modify the data. The

data base designer should provide a mechanism to insure

that access is controlled.

COMPONENTS OF A DATA BASE SYSTEM

Throughout the previous discussion several aspects

and levels of a data base have been mentioned. Figure l

illustrates how these various pieces fit together to

form a complete data base system.

Users

One way the users of a data base system can be

classified is based on the privileges they have. The

data base administrator (DBA) has all privileges and can

be considered the guardian of the system. It is this

person who sets authorization privileges for all other

users and secures the integrity of the system. By

limiting full access ability to the DBA a tighter

control can be kept on the system.

In addition to granting access privileges the DBA

controls other aspects of the system. Any change to the

system's design can only be made when authorized by the

DBA who will first evaluate the advantages and

disadvantages of any possible change. This implies that

9

www.manaraa.com

COMPONENTS OF A DATA BASE SYSTEM

Figure 1

10

www.manaraa.com

the DBA must constantly monitor and note any inefficient

aspects of the system. The DBA alone is responsible for

maintaining the integrity and effectiveness of the

system. Centralizing control in this way limits the

chances of unauthorized data manipulation.

The next level of users include those who are

authorized to actually modify, insert or delete data in

the data base. Each user in this group may be

authorized to modify only a specified portion of the

data base. For example, in the manufacturing company

example, someone with expertise in the warehouse would

be authorized to maintain the data pertaining to that

department but would not be authorized to modify data

pertaining to any other department. In addition these

users might even be prohibited from accessing certain

data (such as employee salaries) .

The last and probably largest group of users would

be those who are only authorized to access data. As

with the previous level these users would most likely be

authorized to access only a limited portion of the data

base. Using this data, queries could be answered and

reports generated.

By structuring the levels of users in this way data

integrity can be maintained and security controlled.

The DBA authorizes access and is responsible for

periodically checking that standards are enforced.

11

www.manaraa.com

Data

While there is only one actual set of data in the

computer at any point in time, there are several ways in

which this data can be viewed. One of the most

important advantages of using a data base system is that

the user can conceptualize the organization of the data

in quite a different way from the actual data structures

used. In this way a user inexperienced with computers

can query the data and the relationships among data

items without knowing the specifics of the data files

accessed. A straightforward example of this

concept would be to conceptualize an indexed sequential

file of names as an alphabetized li�t of these names.

The overall user's view of the data is the

conceptual or logical data base. The actual file

structure used is the physical data base. Depending on

the needs of the overall system the physical files could

be trees, hashed files, sequential files or any

appropriate combination of data structures. Only the

DBA and a small group of systems programmers need be

familiar with this aspect of the data. The types of

logical and physical structures which can be used will

be discussed in Chapters 3 and 4 respectively. The end

user usually remains oblivious to the physical structure

by using software which maps the actual physical

12

www.manaraa.com

structure to the logical view the user sees. This is

analogous to a programmer making calls to a read of an

indexed file without actually having to be aware of the

methods of linking and indexing the particular operating

system actually employs.

As was mentioned earlier (page 8) a single user may

only be authorized to access a portion of the entire

data base. Consequently a particular user may only have

to be familiar with that subset of the logical data

base. This user view describes the logical structure

and relationships among the data items that the user is

authorized to access.

Languages

A main objective of a data base system is to hide

the actual physical structures of the files from the end

7 user • The user need only be familiar with the logical

structure. This is accomplished throught the use of

a query language. The query language consists of a

series of calls to subroutines written in a host

language such as FORTRAN or PL/I. To retrieve a

particular record from a file with a specific attribute

value the user need only make a call such as

SELECT FROM <filename> WHERE <condition>.

The subroutine called from this code will determine

whether the read used will be keyed or sequential and

13

www.manaraa.com

any other parameters needed by the system. Updates,

deletions and insertions can be handled similarly.

The query language is generally designed to

correspond as closely as possible to the logical

structure of the data base. In this way the user need

have minimal computing experience in order to

successfully manipulate the data. Only a fixed set of

commands, modelled from the logical structure, need

be learned.

The DBA however may have needs that can not be

addressed through the query language. Since this

user will have a thorough understanding of the physical

structure of the data base, the host language itself can

be used to manipulate data. The DBA can decide for

instance to expand a two byte integer field to four

bytes. A program written in the host language could be

written to make this transformation. The DBA then will

make the appropriate changes to the subroutines called

by the query language which access or manipulate that

field.

Another language used in a data base system is the

data definition language or data dictionary. This is

not a procedural language but rather a thorough

description of the data structures both logical and

physical
8

•

on the logical level, this language should include

14

www.manaraa.com

descriptions of all logical record definitions as well

as the characteristics of each field within that record.

An example is given in Figure 2 .

EMPLOYEE_ RECORD

Name:
Social Security Number:
Telephone_Number:
Salary:

last,first
ddd-dd-dddd
ddd/ddd-dddd
5000-85000

LOGICAL RECORD DEFINITION

Figure 2

Besides describing the logical records, the

relationships that exist between records and data items

should be listed in terms of the logical model of the

data base. For instance if an employee's salary

depended entirely on his rank which was also included

somewhere in the data base this relationship should be

clearly defined. Other information pertinent to the

specific logical design chosen must also be included.

On the physical level each file structure should be

defined. This should include indexing methods as well

as storage techniques. For instance, a file which is

accessed infrequently could be stored on a slower device

then a frequently accessed file. A thorough description

15

www.manaraa.com

of each physical record type should be listed. This

record definition could differ considerably from any

logical record since the fields in a logical record

could indeed reside in more than one physical file. The

descriptions of each field in the record should address

the actual physical data structures used.

The data dictionary should be maintained in such a

way that it can be easily accessed. Of course only a

small group of users need address the physical

description. The DBA alone should be authorized to make

changes to the data dictionary. · This readily available

description of the data base assists in thoroughly

understanding the totality of the system and thus allows

the user to more readily extract information from the

data base using the query language
9

•

ADVANTAGES

There are several advantages to implementing a data

base system as the means of maintaining an enterprise's

information. During the discussion of the definition of

a data base several positive ramifications were

mentioned. The following summarizes these advantages.

16

www.manaraa.com

Data Integrity Maintained

Whenever a user accesses any information collection

it is with the belief that the information that will be

retrieved is correct. If indeed the data is found to be

faulty the reliability of any reporting based on that

data is jeopardized. Consequently the value of any data

collection is based on the correctness of that data.

Several aspects of a data base system help insure that

data integrity is maintained.

A main objective of a data base system is to

minimize and control any redundant data the data base

contains
10

• As has been discussed (page 6) storage of

uncontrolled redundant information opens the system up

to the possibiity of containing inconsistent

information. This could easily lead to incorrect or

questionable results. Since the data base is

essentially controlled by the DBA, this user can easily

insure in other ways that data integrity is maintained.

Periodic spot checks of data fields can be made as well

as checks that redundant data items are being modified

consistently. The DBA can also insure that only

11
qualified personnel are authorized to modify the data •

17

www.manaraa.com

Security and Privacy Maintained

Some of the methods used to insure data integrity

can also be used to enforce data security. The

privilege to access any data field must be granted to

only those users who have company authorization to see

that data. Confidential information can therefore be

protected since the DBA will insure that authorizations

are correct. Periodic checks by the DBA can be made to

verify that these restrictions are being enforced. The

ease of maintaining the security of the data is the

direct result of having centralized control of the data

12
base system •

More Information Readily Available

An enterprise that does not employ a data base

system to store its information limits.the amount of

information that can be extracted from its system.

Reporting that relies on information stored by separate

departments is cumbersome to generate. At best extra

programming time would be required and might therefore

be cost prohibitive. A ramification of implementing a

data base system is that the entire enterprise's data is

shared by all personnel in the enterprise
13

• A fixed

18

www.manaraa.com

method of representing data and relationships among data

is known. This in turn allows all users the ability to

access data pertinent to several aspects of the company.

Valuable information can be therefore more quickly

retrieved.

Another aspect of a data base system that allows

easy access to information is the query language
14

•

This fixed set of commands are generally all the

inexperienced user need become familiar with before

being able to extract information from the system. The

time consuming, costly, programming process is

minimized. A user with a question can quickly query the

system and extract the answer themselves.

While an enterprise might have had the same data

stored before implementing a data base system that data

would most likely be stored in ways that would make it

virtually impossible to extract the volumes of

information that the data provides.

Easily Adaptable

It is highly unlikely that any system design will

• 1 • t
15

remain static throughout an enterpr1se s ex1s ence •

Additions to the system will most definitely be made.

19

www.manaraa.com

In the manufacturing company example, for instance, the

company might decide that it would be helpful to include

the current cost of a part.

Since the data base system is centrally controlled

the addition of this new field can be made efficiently

and correctly. The DBA can evaluate how a new field

will fit into both the logical and physical data

structures and make the necessary changes to both. The

data manipulation and data definition languages can then

be updated. The user need only be informed that this

new information is accessible. The many existing

application programs based on the query language can

continue to work without change.

A modification to the data base design can be made

without affecting the users' ability to access the data

available
16

•

20

www.manaraa.com

REFERENCES

1Martin, James Computer Data Base Organization,
2d ed., (Englewood Cliffs, N.J.: Prentice-Hall, 1977)
p. 22.

2
Ibid., p. 24.

3
Date, c. J. An Introduction to Database Systems,

3d ed., (Reading, Mass.: Addison-Wesley, 1982) p. 5.

4
Martin, p. 37.

5
Date, p. 13

6
Martin, p. 43.

7
Ullman, Jeffrey D. Principles of Database Systems,

2d ed. (Rockville, Maryland: Computer Science Press,
1982) p. 3.

8
Ibid., p.lO.

9
Martin,James An End-User's Guide to Data Base,

(Englewood Cliffs, N.J.: Prentice-Hall, 1981) p. 113.

10
Date, p.lO.

11 Ullman, p.3.

12
Date, p. 11.

13
bod 5 I 1 ., p • •

14
° C t D t B 0 ° to 43 Mart1n, ompu er a a ase rgan1za 1on, p. •

15
Ibid., p.29.

16
Ullman , p • 9 •

21

www.manaraa.com

CHAPTER 3

LOGICAL VIEW OF A DATA BASE

In order to use any data base the user must be

familiar �ith the logical structure of the data

involved. This affects the way the user will update,

modify or extract information from the data base. Of

course the actual physical structure of the data may

differ considerably from what the user perceives the

structure to be but this difference should be disguised.

There are several logical approaches to data base

design. The three most common approaches are:

1. hierarchical,

2. network, and

3. relational.

In order to illustrate the design concepts involved with

these approaches a library data base will be considered.

Suppose a library wishes to maintain a data base

which contains information about their current selection

of books. Information about authors such as names and

22

www.manaraa.com

addresses might be included as well as information

pertaining to books such as the title, publisher, year

published, number of pages and catalog number (assumed

to be unique for each book). Also the relationships

between data items should be maintained such as which

books were written by a specified author.

HIERARCHICAL

Using the hierarchical approach the user views the data

.
f

17
as a ser1es o tree structures • Figure 3 shows the

library information in a hierarchical structure. In

this case each tree has as its root a record describing

the author. This parent record has as its children a

list of records representing the books that author has

written. There might be several children or none at all

(as is the case of the author Patrick Powell). In

general there can be any number of dependent records to

any level. In any case however no dependent record can

exist without a superior. so in this example a book

without an author could not be listed without creating a

dummy author record.

In the example given (Figure 3) each record

uniquely describes a real world entity, either an author

or a book. This is not always the case in hierarchical

structures. For example, a dependent record could be

23

www.manaraa.com

�24

402 Park Ave., N.Y., N.Y.

760.4 542 j Wiley

l Smith, William r
��

57 Willow St., Trenton, N.J. I

Data Base Design 759.7 1979 124 Sribner's

User Interface 760.93 1983 311 Wiley

l Adams, Robert I Box 43, Des Moines, Iowa l

""
FORTRAN 760.82 1981 421 Little Brown

FORTRAN II 760.83 1984 184 Brooks

[srown, Mary I University of Maine, orono, Maine I

�
Programming in BASIC 760.71 1981 256 IBM

FORTRAN II 760.83 1984 184 Brooks

Powell, Patrick 72 Parkway, Little Falls, N.J.

HIERARCHICAL VIEW OF LIBRARY DATA

Figure 3

www.manaraa.com

created for books which provides additional information

about the book such as the section of the library in

which it is found. In this case then this new record is

providing information about a book and not uniquely

identifying it. In particular that record would not

have any meaning without being viewed with its superior.

Relationships between entities are provided through

links
18

• To know for instance what books were written

by William Smith one would have to follow the link

between the author record and the list of book records.

Two constructs, are therefore needed, records and links.

The user must be familiar with both.

In order to maintain the data base the user must be

able to update data, delete data or insert data into the

structures provided. In this case the user must be able

to detect the type of record being accessed. Suppose

the library acquired a new book by William Smith. After

creating the record containing the information about the

new book a search would be made for William Smith's

author record. The book record then would be placed in

the corresponding list of book records. To delete a

book by William Smith not only must the appropriate book

record be deleted but a check must be made that the link

from the author record to the book list is still

correct. It is clear that the various types of records

25

www.manaraa.com

used as well as the links make these operations complex

and, hence, prone to error
19

•

Now consider now some possible queries on this data

base and the algorithms that would solve these queries.

Query 1: Find the titles of books written by William

Smith.

Repeat

Read next author record

If author is William Smith then

While more books in this author's

list

Read book record

Print book title

end

Until William Smith author record found

Query 2: Find the authors' names of all books with more

than 200 pages.

While more records

Read next author record

End

While more books in this authors list

Read book record

End

If pages in book > 200 then

Print author's name

26

www.manaraa.com

Note how the user must be concerned with several

issues not inherent in the query itself
20

• For instance

the type of record being accessed must be determined and

the notion of lists of books under an author record must

be understood. The users must have a solid

understanding of the structures involved in order to

query the data base correctly.

Recall now that one of the main objectives of a

data base system was to minimize redundant data.

Consider then the book FORTRAN II which has two

authors. Two equivalent instances of the book record

then are included in the data base. This is the result

of having a many to many relationship between the root

and child re�ords, i.e. one book may have many authors

and one authors could have written several books.

Clearly this will be not be an uncommon occurrence and

therefore opens the system up to the problems associated

with redundant data. This is obviously undesirable and

the design should therefore be modified to avoid this

problem. There are methods available for implementing

many to many relations in a hierarchical structure
21

but

they generally complicate the user's view of the data.

A network design supports this type of relationship more

easily
22

•

27

www.manaraa.com

NETWORK

The user can now view the data on a series of

chains linking the records in various ways
23

In

addition to author and book records a third type of

record, a connector, is also used. The diagram in

Figure 4 illustrates (using shortened versions of each

record) the users view o� the library data base under a

network approach.

In this example the connector record represents the

association between authors and books and gives

. f t. t . . t h. .
. 24

1n orma 10n per a1n1ng o t 1s assoc1at1on • All

connectors for a given author are placed on a chain

(labeled 1) beginning and ending at the author record.

Similarly all book records initiate and end a chain

(labeled 2) containing its corresponding connector. A

connector then in this example lies on at most two

chains. If an additional record was included pertaining

to each book a third chain could be initiated.

Note in this approach there are no superior or

dependent records. Consequently the insertion of a book

without an author does not necessitate the creation of a

dummy author record. Rather the book record will chain

with its connector but the chain to an author will be

empty.

28

www.manaraa.com

29

759.7

� ���

NETWORK VIEW OF LIBRARY DATA

Figure 4

www.manaraa.com

As with the hierarchical design a real world entity

may not necessarily be defined by a record alone. The

record and the information provided by and/or through

the connector record may be needed.

Relationships between entities are determined

through links
25

• Note now that the representation of the

many to many relationship is no longer a problem
26

• A

book that has several authors will merely lie on a chain

that links all those authors through various connectors

(see Figure 4).

Suppose the library wished to insert a new book by

an author who is already listed. In addition to

creating the appropriate book record care must be taken

to adJust the links on the book chain corresponding to

this author. If a book was withdrawn from circulation

not only must the book record be deleted but two chains

must be modified correctly. It is clear that the

addition of more than one type of link complicates the

insert and delete operations further
27

Consider now the two sample queries.

30

www.manaraa.com

Query 1: Find all titles of books written by William

Smith

While more records

Read author record

If author is William Smith then

Follow chain 1

While books on chain 2

Print title

End

End

Query 2: Find the authors' names of all books with more

than 200 pages.

While more records

Read author record

Follow chain 1

While books on chain 2

If pages > 200 then

Print author's name

End

End

Now the user must be concerned with not only the various

types of records but the different types of chains which

must be followed in order to correctly find the

. f
.

d . d
28

1n ormat1on es1re •

with

The user is again confronted

31

www.manaraa.com

complexities which have nothing to do with the query

posed.

RELATIONAL

In this case the data is viewed in the form of

tables of information. The three tables in Figure 5 are

an example of how the library data might be represented.

While the user can simply view the structures as

tables of data, in reality these tables are mathematical

relations and must therefore obey certain constraints
29

Every value in a particular column (attribute) must be

drawn from a predefined set of possible values (domain).

For instance the values under the attribute CAT NUM must

belong to the set of all valid catalog numbers. Every

row (tuple) must be different and must therefore be

uniquely determined by a set of attributes (key). For

instance each tuple in INFO is uniquely determined by

NAME and ADDRESS.

Each tuple in these relations describes uniquely a

real world entity
30

in the library data collection,

either an author or a book. Relationships between

authors and books are represented by values under given

'b
31

attr1 ute names For instance the fact that William

Smith has authored two books in the library is

represented by the fact that his name appears twice

32

www.manaraa.com

33

AUTHORS

NAME TITLE CAT NUM

Jones, John Computer Are Fun 760.40

Smith, William Data Base Design 759.70

Smith, William User Interface 760.93

Brown, Mary Programming in BASIC 760.71

Adams, Robert FORTRAN 760.82

Adams, Robert FORTRAN II 760.83

Brown, Mary FORTRAN II 760.83

INFO

NAME ADDRESS

Jones, John 402 Park Ave.,N.Y.,N.Y.
Smith, William 57 Willow St., Trenton, N.J.
Brown, Mary University of Maine, Orono, Maine
Adams, Robert Box 43, Des Moines, Iowa
Powell, Patrick 72 Parkway, Little Falls� N.J.

BOOKS

CAT NUM YEAR PAGES PUBLISHER
-

760.40 1982 542 Wiley
759.70 1979 124 Scribner's
760.93 1983 311 Wiley
760.71 1981 256 IBM
760.82 1981 421 Little, Brown
760.83 1984 184 Brooks/Cole

RELATIONAL VIEW OF LIBRARY DATA

Figure 5

www.manaraa.com

under the attribute NAMES in AUTHORS. Similarly it is

clear that John Jones wrote a book which was published

in 1982 since the catalog numbers are identical in the

two tuple in AUTHORS and BOOKS. Entities and the

relationships between entities then can be represented

in these tables or relations with no other data

structure necessary.

The operations used to modify the data base are now

straightforward. For instance when a new book is

brought into the library three new tuples can be

inserted into the three relations by simply providing

the information needed for the three records and

appending these new records onto the tables • . Of course

a check must be made to insure that the author tuple is

not already listed in the AUTHOR table since each tuple

must be unique. In order to delete a book from the data

base the records involving that book must be located in

the tables and deleted but the record involving the

author's address could be maintained for further

reference.

In order to answer queries posed the user simply

manipulates the tables of data.

34

www.manaraa.com

Query 1: Find the titles of books written by William

Smith.

While not end of table AUTHORS

Read next NAME in AUTHORS

End

If NAME = Smith, William then

Print title

Query 2: Find the authors' names of all books with more

than 200 pages.

While not end of table BOOKS

Read next PAGES in· BOOKS

If PAGES > 200 then

Num = CAT NUM

While CAT NUM Num

Read next CAT NUM in table AUTHORS

end

Print NAME in AUTHORS

End

When using relational data bases the data

manipulation language will often provide the user with

several higher level operators which can be used to

answer queries with a simple set of commands
32

These

operators are based on the theory of relational algebra

but still allow the user to view the procedures as

simple table manipulations.

35

www.manaraa.com

ADVANTAGES OF THE RELATIONAL Mo
"
DEL

In the last section three logical data base models

were presented. Of the three the relational model has

several major advantages.

Understandability

Perhaps the most important advantage of the

relational model is its ability to be understood by all

levels of users. Clearly this should be a primary

objective when choosing a model since the data base

system will be of little value if the users can not

. . h d. ff. 1
33

access 1t w1t out 1 1cu ty •

One characteristic of the relational model which

makes it understandable is the fact that it uses only

one construct to represent all the information in the

data base
34

• The relation, which can be viewed simply

as a table of data, is familiar to all levels of users.

Any row (tuple) in the table clearly identifies a unique

entity in the enterprise. Relationships between

entities are represented by the listing of equal

attribute values in more than one table.

This single construct contrasts with the

hierarchical and network models which rely on various

types of records and links to represent the same

36

www.manaraa.com

information. A real world entity in this case is shown

through the linking of several records, each record only

providing some information about the entity and not

uniquely identifying it. In order to see the

relationships between entities other links may have to

be followed. Clearly these are more complex models in

which the user must be familiar with several types of

constructs and how they fit together in order to view

the data base in its entirety.

The relational model has retreated from the

complexities of the hierarchical and network models and

hence provides a more easily understood picture of the

enterprise's information
35

•

Ease of Manipulation

Not only should the data base design be

understandable to all levels of users it should be

constructed in such a way that it can be easily

manipulated. Users should be able to retrieve, update,

insert and delete data without unnecessary complexity.

Because the relational model depends on only one

construct it is easier to implement data manipulation

procedures
36

• For instance, in order to update

information in the relational data base it is simply

37

www.manaraa.com

a matter of searching for the appropriate tuple in the

corresponding files, allowing the user to update it and

then rewriting it to its location. In the cases of the

network and hierarchical models not only must the

appropriate record be found and updated but it must be

determined that the links involved with that record are

still correct. Clearly this procedure can become quite

complex as the model itself becomes more complex.

Deleting a record in the network and hierarchical models

also requires careful updating of links. In fact the

deletion of certain types of records could imply the

deletion of several of its dependent records.

Consequently while the relational model basically needs

only one type of update, delete and insert the network

and hierarchical models will need many more, each
37

dependent on the type of record being manipulated.

In terms of querying the data base the relational

model has a set of higher level commands that allow the

user to basically cut and past tables of information to

construct new tables
38

• The fact that these relational

operators are closed allows the user to reapply the

operators to any result in order to retrieve more

detailed information
39

• Generally the query languages

used in the network and hierarchical models are more low

level and require more operators to manipulate the

38

www.manaraa.com

various constructs involve. Since in these models

relationships depend on the linking of various record

types the user is forced to consider navigational

strategies in order to derive desired information.

Often users are forced to spend an inordinate amount of

time considering the strategy and implementing it

resulting in less information being readily available.

The added complexity also tends to inhibit unanticipated

queries due to the extra time needed to derive the

result.

Since the relational model's design lends ltself to

more straightforward manipulation techniques the typical

user will find it easier to access and retrieve

information from a relational data base
40

•

Theoretical Basis

Generally there is no known theoretical support for

the design of either the hierarchical or network models.

The relational model however is supported by two

theoretical foundations
41

•

The single construct of the relational model is

actually the mathematically defined relation. A

relation is a subset of a cross product of two or more

sets. The set of relational operators manipulates these

sets and yields new sets.

39

www.manaraa.com

Consequently the relational operators are defined in

terms of mathematical set theory operators. The fact

that a relation is a known mathematical construct

implies that its behavior will be more predictable and

more likely to appeal to the user's intuition.

The process of designing a relational data base is

supported by another theoretical base. Normalization

theory provides a set of rigorous guidelines for the

design of the logical model. In this way the designer

of the data base can insure that potential pitfalls and

problems in design can be identified and possibly

eliminated.

The theoretical bases for the relational model help

guard against unpredictable problems in the future use

of the data base system.

Adaptable

It would be rare for a data base design to remain

static over the course of its existence. As an

enterprise expands and changes adjustments will most

likely have to be made to the data base's logical design

to reflect these changes. One objective of a data base

system then is that these modifications can be made with

as little disruption as possible to the currently

running system
42

Thus the notion of data independence

is supported.

40

www.manaraa.com

The simple design of the relational model provides

a basis for independence between application programs

and the physical structure of the data
43

• In general

when accessing a network or hierarchical modelled data

base the application programmer must consider and

navigate the various links involved. If say a new

record type and its links are introduced to these

systems many of the existing application programs that

rely on the old structure will have to be updated. This

is because the new navigation path may be different from

the old due to the addition of the new record and its

links. The relational model's application programs do

not rely on navigational techniques. If a new relation

is added to the system the existing application programs

can continue to run without any change. If a new

attribute is added to an existing relation the existing

application programs may (or may not) have to be updated

to reflect this new field in the known record but with

only that modification continue to run. No change to

the program's logic will be needed. Generally the only

time existing application programs in a relational

system will no longer run is when an attribute that the

application program depended on is deleted.

In general the relational system is more flexible

and therefore more capable of adapting to the existing

environment. In fact it was this issue that Codd

41

www.manaraa.com

primarily addressed in his 1970 paper in which he first

introduced the idea of a relational data base.
44

The relational model has several important

advantages that tend to make it a more desirable system.

one disadvantage that has been cited deals with the

inefficiencies that arise when using some of the

relational operators on large data bases. It has been

noted for instance that careless use of the cross

product operator in conjunction with other operators

could lead to large amounts of useless data being

generated. This in turn wastes storage space and time.

In small data bases this may not be a serious problem at

a11
45

• In large data bases the concept of optimizing a

set of relational commands has been used resulting in

programs as efficient as those in any other data base

system
46

• Therefore the relational model with its

simplicity tends to be the preferable design.

42

www.manaraa.com

REFERENCES

17
Date, D. J., An Introduction to Database Systems,

3d ed., (Reading, Mass.: Addison-Wesley, 1982) p. 67.

18
Ibid. P• 68.

19
Ibid. P• 69.

20
rbid. P• 68.

21
ullman, Jeffrey D., Principles of Database

Systems, 2d ed. (Rockville, Maryland: Computer Science
Press, 1982) p. 126.

22
Date, p. 70.

23
rbid.

24
rbid.

25
rbid. p. 78.

26
rbid.

27
Ibid. p. 73.

28
rbid.

2
9Ibid. p. 65.

30
Ullman, p. 21 •

31
Date, p. 6 5.

32Date, p. 77.

33
Ullman, p. 168.

34

35

Date, p. 4 7 8 •

Ullman , p • 1 7 0 •

36oate, p. 478.

37
rbid. ,p. 73.

43

www.manaraa.com

38
rbid., p. 478.

39rbid,. p. 479.

40
U llrna n, p • 16 8 •

41
Date, p. 479.

42 . 39 Martln, p. •

43
rbid., p. 226.

44
codd, E. F. , "A Relational Model of Data for

Large Shared Data Banks", Communications of ACM, (Vol.
13, #6, June, 1970) p. 387.

45 . J c
. t. Martln, ames, ornputer Data Base Organlza 1on,

2d ed., (Englewood Cliffs, N.J.: Prentice-Hall, 1977)
p. 225.

46
U llrna n , p • 1 7 0 •

44

www.manaraa.com

CHAPTER 4

PHYSICAL DESIGN OF A DATA BASE

While the major thrust of this paper is on the

logical aspect of designing a data base some attention

to the physical design is helpful in order to get an

understanding of the entire data base design process.

As discussed in Chapter 2 the Data Manipulation

Language (DML) will hide from the user the actual

physical data structures used. The developer of the DML

can view the physical data as a set of files. Each file

contains all occurences of one type of physical record.

For each file the DML must know the record defintion,

the fields in each record, any sequencing existing in

the file and (if direct accessing is available) what

keys can be used. The DML can take advantage of any

accessing methods the particular operating system

provides.

When choosing the type of file structures to use

several aspects of the entire data base system and its

45

www.manaraa.com

environment must be considered. The following

summarizes some of these considerations.

STORAGE SPACE AVAILABLE

If the enterprise's computer system is such that

high speed memory is limited, the designer of the data

base must insure that each file is structured to take

best advantage of any space used.

There are several methods which can be used to

conserve space in each file. Consider for instance a

file which includes a 30 character representation of the

department an employee works in. Since in general one

company will have a small fixed number of departments

and many employees working for each department a unique

integer can be used to represent each department. This

integer, taking only 1 word, can then serve as an index

into a small file which actually lists the character

47
descriptions of the departments • Of course any

listing that required the actual department name would

require at least one extra seek but the saving of space

balanced against this extra time might be preferred.

A similiar method that can be used to conserve

space is a 2-dimensional bit map in which a 1 in a

particular i,j position determines a field value for the

record associated with the ith row. This method is

46

www.manaraa.com

particularly useful for representing variable length

48
records • Consider, for instance, a record containing

a student's course schedule. Rather than maintain

variable records for each student containing course

numbers a bit map could be used where each row of the

table represents a unique student and a 1 in a specified

column implies that student is currently enrolled in

that class.

When space is severely limited the data base

designer may decide to store infrequently used files on

slower mediums such as magnetic tape
49

• This would

cause a serious delay in accessing that data but might

prove necessary.

VOLATILITY OF A FILE

While the data base designer can expect that almost

all of the files will be subject to deletions and

insertions some files will be more volatile than others.

The fact that a file will be highly volatile should be

taken into consideration when choosing a file structure.

It is known, for instance, that tree structures become

unbalanced after several insertions and deletions. This

in turn effects the efficiency of searching on this

structure. A similiar argument can be made concerning

47

www.manaraa.com

hash files where after several insertions the rate of

collisions will increase. If the data base designer

still prefers these structures periodic reorganizations

of the files can be made during times the system is not

active.

In general, however, some structures should be

avoided for files where the rate of deletions and

insertions is high. Suppose the designer of the data

base ordered the records in a sequential file by some

field value. Then each time a new record is added to

the file several records may have to be physically moved

in order to maintain the file's order. This could prove

very time consumming. Some techniques which could be

used instead include ordering the file by the time of

insertion of the records or using pointers to maintain a

50
file sequence

In systems where the rate of change is extremely

high it might be advantageous to do no real time

inserting and deleting but rather maintain a separate

file of the records to insert and mark those to be

deleted
51

• This differential file of records to be

inserted can be designed to be accessbile for searching

if the desired record is not found in the permanent

file. During a time when the system is not highly

active the differential file can be merged into the

actual file system and marked records deleted.

48

www.manaraa.com

SPEED OF RETRIEVAL

When the designer of the data base is evaluating

various data structures a major consideration should be

the speed at which records can be retrieved, especially

if queries are to be processed interactively. If the

value of the system depends on the ability to quickly

retrieve records, this should affect the designer's

choice of both the data structures and the storage

devices. Also taken into consideration should be any

delay in response due to the communication system. For

instance, if using telephone lines causes a delay in

response the data base system should compensate as much

as possible.

Suppose the data base was to be used for an

airline's reservation system. Obviously any delay in

response time here would be undesirable. After the data

base designer has obtained the hardware that best meets

this goal, several data structures and data base

techniques can be used to also insure that the response

time is fast.

In general it is best to design the system so that

all accesses are to single records via their primary

key
52

• searching should be avoided if possible, but if

necessary designed so that it can be accomplished

quickly perhaps via indices in main memory. The

designer of the data base can decide which information

49

www.manaraa.com

will be queried most frequently and store it in the

fastest medium. Some operations such as inserting and

physically deleting may be delayed until activity on the

system is slow. In some cases the data base designer

might decide to maintain a condensed copy of the data

which is accessed most frequently. This smaller set of

data can be stored on the fastest medium but requires

careful periodic reconciliation of information
53

• This

is a case where the data base design objective of

eliminating redundant data is waived but controlled.

In many cases fast response time is needed to

provide a friendly dialogue between the computer and the

user. It would be frustrating for a user, who say has a

customer on the telephone, to have to wait for half a

minute to get the information requested. The data base

designer can try to develop the dialogue in such a way

so that delays will occur at points when the user is

prepared to relax for an instant
54

• Suppose the user is

going to update a record. While the sytem is retrieving

the record the user can be typing in information

pertaining to the update. In this way, the delay in

searching for the record is hidden. After the user has

entered all the updated information the user is

generally prepared to relax for a moment. At this point

then any delay caused by say rewriting the record to the

file would not neccessarily be undesirable. Thus, by

50

www.manaraa.com

interleaving appropriate commands the data base designer

can take advantage of the user interface when developing

queries.

MULTIPLE INDEXES

In many systems it is desirable to be able to

retrieve records quickly via many fields as opposed to

strictly via the primary key. Since the primary key

usually determines the physical address of the record

some other method must be used to quickly access records

with a specific value in a given field. Additional

records may also have the same value in that field since

only the primary key is known to be unique in each

record.

One strategy that can be used is to build an index

for each secondary field that will be accessed
55

• This

generally implies using pointers to the records that

satisfy a specific field value. Variable length records

would be needed in the index file since the number of

pointers needed will be unknown. Another, perhaps more

satisfactory, technique would be to have the index point

to a chain of records with that common attribute
56

• In

this case the actual data record must contain a pointer

field for each field that might be accessed this way,

but the number needed would have to be known in advance.

51

www.manaraa.com

Of course the use of any index file requires

additional storage space and maintenance. Consequently,

a tradeoff is made between the ease of accessing a

record via these fields and the extra space and

programming required. The data base designer must

carefully examine the options before committing the

system to a particular structure.

THE LOGICAL DESIGN

Besides maintaining the data items themselves the

physical level must also represent in some way the

relationships between data items. Recall from the

previous section that the three logical appproaches

represent the relationships in different ways: the

network model uses links through connector records, the

hierarchical uses links between types of records and the

relational uses the listing of equal attribute values

from common domains in different relations. The DML

must transform the physcial representation into the

logical and insure that the user can properly take

d f h 1 . 1 1 . h
. 57

a vantage o t e og1ca re at1ons 1ps •

Various pointer techniques can be used to represent

the relationships in the network and hierarchical

models. Of course, the more complex the logical design

the more complex the physical representation will be to

52

www.manaraa.com

create and maintain. In general the simplest logical

model to implement is the normalized relational model

where links to represent relations are not necessary
58

•

The previous discussion listed several important

issues which the data base designer must consider when

choosing the physical data structure to represent a

particular logical model. However, tradeoffs in

efficiency occur between different data structures. The

following summarizes some of these tradeoffs.

PHYSICAL DESIGN TRADEOFFs
59

Table l

EMPHASIS ON

Speed of retrieval

Speed of retrieval

Flexibiility of searching

Flexibility of searching

Minimize storage space

Noncomplex structures

Complex structures

TENDS TO

Increase storage space

Increase cost of hardware

Decrease speed of retrieval

�ncrease storage space

Complicate maintenance

Increase retrieval speed

Complicate recoverability

The data base designer must decide what the

system's priorities are and work from there. Tradeoffs

will then be made with these priorities in mind.

53

www.manaraa.com

REFERENCES

4 7
M . J C

. .

art1n, ames, omputer Data Base Organ1zat1on,
(Englewood Cliffs, N.J.: Prentice-Hall, 1977) p. 575.

48
Ibl·d. 329 p. •

49
Ibid. p. 314.

50
Ibid. P• 619.

51
Ibid. P• 620.

52
Ibid. P• 631.

53
Ibid. p. 636.

54
Ibid. P. 635.

55
Ibid. P• 465.

56
Ibid. p. 468.

57
Date, c. J., An Introduction to Database Systems,

3d ed., (Reading, Mass: Addison-Wesley, 1982) p. 63.

58
Martin, p. 316.

59
b.d 309 I 1 • p. •

54

www.manaraa.com

CHAPTER 5

THE RELATIONAL DATA BASE MODEL

There are essentially two components to the

relational data base model, the relational constructs

used to contain the data and their relationships and

the relational algebra used to manipulate the data.

RELATIONAL CONSTRUCTS

As shown in Chapter 3 the foundation for the

definition of a relational data base is simply the

concept of a table of information. This logical

approach to data manipulation is especially convenient

for an inexperienced user since the table is a common

way to list and view data. In order to insure the data

can be correctly retrieved using the data manipulation

language certain guidelines must be placed on the

construction of the tables. Using the mathematical

55

www.manaraa.com

theory of relations a relational data base can be

defined.

Consider the following example. A personnel office

of a small company wishes to maintain data concerning

their employees. This could include their names,

addresses, telephone numbers, departments they work for,

dependents and salaries. one table might be constructed

as in Figure 6.

CURRENT_ EMPLOYEES

NAME STREET CITY ST TELEPHONE

John Jones 23 Main Street Richmond va. 355-1234
William Smith 55 Walnut Road Richmond va. 257-2343
Mary Brown 123 south street Goochland va. 223-1234
Ann Williams Box 1422 Richmond va. 446-1233
Robert Brown 84 Conover Street Richmond va. 678-4433
Paul Jones 47 Wayside Ashland va. 432-7895
Robert J:o'ield 99 Boulevard Richmond va. 789-5656
Howard Evans Box 34 Goochland va. 987-8989

..

CURRENT EMPLOYEES RELATION

Figure 6

Domains And Attributes

Each column in a table contains one type of data.

The values that appear in a column then can be

considered members of a domain that defines that data

type. For example in Figure 6 the column of names could

be considered a subset of o1, the set of character

56

www.manaraa.com

strings of, say, length 30. Each column's domain could

be defined in a similiar way.

DEfiNITION: A domain is a nonempty fixed set of data

items that are of the same type.

In Figure 6 it is clear that the values in the column

NAME are a specific use of the domain, character strings

of length 30, from which the values are drawn. NAME,

then, which distinguishes that use is considered an

attribute.

DEFINTION: An attribute value is the specific use of a

domain value in a relation.

The same domain could be used in several ways in the

database. For instance names of retired employees could

be represented in RET EMP with their values elements of

the same domain used by NAME. Each distinct use of the

domain could be assigned a different attribute name

distinguishing the way the values are used.

Tuples

Examining the rows of the table in Figure 6 it is

clear that each row describes a different employee or a

different actual entity. The attribute values in that

row describe or provide information about the entity. A

57

www.manaraa.com

row is generally referred to as a tuple and is analagous

to a record in a file. Since there are five attribute

values in each row of the table in Figure 6 the tuples

are referred to as 5-tuples.

DEFINITION: An n-tuple is a set of n attribute values

describing an entity.

Relations

The table in Figure 6 then is simply a set of

5-tuples each of whose values are drawn from specified

domains and listed in a specific order. This table then

satisfies the defintion of a relation.

DEFINITION: Given a collection of Domains

D1,D2, ••• ,Dn' R is a relation of degree n

on those n domains if it is a set of

ordered n-tuples <d1,d2, ••• ,dn>

such that d1E D1, d26 D2,
·

••• , dn� Dn•

A relation can be denoted by R(A1:D1,A2:D2, ••• ,An:Dn)

where Ai is the attribute name for the ith column whose

values are drawn from the ith domain. When the domains

are defined in context the shorter notation

R(A1,A2, ••• ,An) may be used. The relation in Figure 6

can then be denoted as

CURRENT_EMPLOYEES(NAME, STREET, CITY, ST, TELEPHONE).

58

www.manaraa.com

Consider the information that is contained in

CURRENT_EMPLOYEES. Clearly it would be of no use to

list an employee more than once. Given that each tuple

is unique it is apparent, then, that the combination of

the five attributes uniquely determines each tuple in

the relation. A proper subset of attributes however is

often all that is needed to uniquely determine the

tuple. Assuming (prehaps unrealistically) that no two

employees will have the same name in CURRENT_EMPLOYEES,

NAME satisfies this property and is therefore considered

the key of the relation. This is denoted by

CURRENT_EMLOYEES(NAME, STREET, CITY, ST, TELEPHONE).

DEFINITION: A key of a relation R is the smallest set

of attributes that uniquely identifies each

tuple in R.

In some cases more than one set of attributes might

qualify to be the key of a relation. As another example

consider the relation LOCATION (Figure 7) describing the

departments employees are qualified to work in. Note a

particular employee might be qualified to work in more

than one department. Therefore the name alone does not

59

www.manaraa.com

qualify as being the key for this relation. However the

combinations of attributes (NAME, DEPT) and

(NAME, DEPT#) uniquely determine each tuple. Both of

these sets of attributes are considered candidate keys

and one will be designated as the primary key.

LOCATION

[NAME, DEPARTMENT, DEPT#]

NAME DEPARTMENT DEPT#

John Jones Engineering 423

William smith Development 472

Mary Brown Resources 415

Ann Williams Personnel 402

Robert Brown Accounting 410

Mary Brown Accounting 410

John Jones Development 472

Paul Jones Engineering 423"

Robert Field Maintanence 411

Howard Evans Personnel 402

William Smith Resources 415

LOCATION RELATION

Figure 7

suppose that an employee moves and hence changes

their address. The information listed in

CURRENT_EMPLOYEES (Figure 6) must be updated to reflect

this change. It is imperative that the exact location

of the appropriate tuple be known before an update can

be completed. Uniqueness is important to insure that

the correct tuple is modified. The use of the primary

key insures that the update is completed correctly and

60

www.manaraa.com

therefore must be specified clearly for each relation

defined in the data base.

Consider the relation PROMOTIONS (Figure 8) in

which the personnel office wishes to maintain a list of

employee•s promotions and the date they occurred. Note

that the promotion date was not known when the personnel

office entered the information that Paul Jones was

promoted to senior Engineer. Therefore the date value

might be null (denoted by ?) for a given tuple. In this

relation then the date plays no role in uniquely

identifing a tuple. Since it does not provide any

distinguishing information about the employee in

question it must not be considered an element of the

key. Note also that a given name value could appear

more than once in the relation if an employee has had

several promotions. The key of the relation then must

be the set (NAME, NEW_POSITION). In general an

attribute that may assume null values should not be

considered an element of the key60•

61

www.manaraa.com

62

PROMOTIONS

[� ' NEW POSITIONS, DATE]

NAMJ:: NEW_POSITIONS DATE

John Jones Manager 9/15/83
William smith Senior Programmer 1/ 4/82
Ann Williams Director 12/ 3/83
Paul Jones Senior Engineer ?

Robert Field Supervisor 6/ 7/84
Mary Brown Systems Analyst 7/31/82
John Jones Assistant Manager 4/23/78
Howard Evans Researcher 5/26/82
Ann Williams Systems Analyst 3/23/80

PROMOTIONS RELATION

Figure 8

First Normal Form

Consider the table of family information (Figure 9)

in which the personnel office maintains information

concerning the employees' dependents perhaps for

insurance reasons. Note that some of the rows contain

blanks since the person who constructed this table

simply listed the name of the employee once if that

employee has several dependents. While it can be argued

that this table obeys the definition of a relation there

are several problems inherent in its construction.

www.manaraa.com

NAME DEPENDENT RELATION AGE

John Jones Louise wife 32
James son 5

William Smith Mary wife 43
Mary daughter 15

Mark son 17
Mary Brown Susan daughter 3

James son 5
Robert Brown Frances wife 57

Howard Evans Paul son 14
Robert son 16

John son 10

FAMILY INFORMATION

Figure 9

Recalling that a key uniquely identifies a tuple in

a relation it is clear that there is no combination of

attributes that satisfies this property. Obviously the

set of attributes (John Jones, Louise, wife) uniquely

identifies the first row but the second row contains a

blank value for name and there is more than one listing

of , James, son) in the table. This is the result

of having a set of values, the dependents, associated

with a single occurence of an employee's name. For

example, the single listing of John Jones has associated

with it a set containing two dependents. This is

inconsistent with the defintion of the key of a relation

and will cause problems with the the Data Manipulation

Language's ability to uniquely find a record. To avoid

this all relations should satisfy First Normal Form.

63

www.manaraa.com

DEFINTION: A relation is in First Normal Form if each

attribute value is atomic (single valued).

This means that the table FAMILY should be reconstructed

without using sets of values for a given attribute.

This is accomplished by simply listing the employee's

name in each tuple (Figure 10). The key then is the set

(NAME, DEPENDENT, RELATION) and the uniqueness of each

tuple is insured.

FAMILY

[NAME, DEPENDENT, RELATION, AGE]

NAME DEPENDENT RELATION AGE

John Jones Louise wife 32

John Jones James son 5

William Smith Mary wife 43

William Smith Mary daughter 15

William Smith Mark son 17

Mary Brown susan daughter 3

Mary Brown James son 5

Robert Brown Frances wife 57
Howard Evans Paul son 14

Howard Evans Robert son 16

Howard Evans John son 10

FAMILY RELATION

Figure 10

The first component, then, of the relational data

base model is a collection of relations that satisfy

64

www.manaraa.com

First Normal Form. The user is confronted with what

appears to be a series of tables of information. By

constructing new relations using the relational

operators, the second component of the relational model,

the user can then extract a large amount of additional

information.

65

www.manaraa.com

RELATIONAL ALGEBRA

To extract information from a relational data base
�

the user constructs new relations from those defined in

the data base schema. A tool that can be used to do

this is the set of operators defined in relational

algebra. These operators manipulate one or more

relations to obtain a new relation. The user can view

these procedures as "pasting and cutting" tables of

information in order to derive new tables.

Select

Consider the relation EDUCATION (Figure ll) and

suppose a user wanted a listing of all employees who

EDUCATION

NAME, DEGREE, MAJOR]

NAME DEGREE MAJOR·

John Jones MS Engineering
William Smith MS Computer Science

Mary Brown BS Computer science
Ann Williams BA Business
Robert Brown MA Business
Paul Jones MS Computer science
Howard Evans BA Business

EDUCATION RELATION

figure ll

66

www.manaraa.com

have degrees in Computer Science. The SELECT operator

will choose that horizontal subset of tuples where the

value of the attribute MAJOR matches the value "Computer

Science". This operation can be denoted by

PROG [NAME, DEGREE, MAJOR]:=

EDUCATION WHERE MAJOR = 'Computer Science'

and the result is listed in Figure 12.

PROG

NAME DEGREE MAJOR

William Smith MS computer Science
Mary Brown· BS Computer Science
Paul Jones MS Computer Science

PROG RELATION

Figure 12

PROG is the name given to the resulting relation and its

attribute names are given in the square brackets. Often

these attribute names will be the same as in the operand

relation(s) but this is not necessary. (The notation :=

is used to indicate an assignment is being made

distinguishing this from the equality operator used for

comparison).

67

www.manaraa.com

tiELECT determines a new relation R' which is a

subset of tuples from a relation R. The tuples in R'

are those that satisfy a boolean expression involving an

attribute value from R and other values from the same

domain. The resulting relation will have the same

attributes as the original.

DEFINITION: Let R(A1:o1, • • • ,An:Dn) be a relation. Let

op denote any one of the comparison

operators =,<,<=,>,>=,<>. Let vi be either

a domain value from D· or another attribute
l

name defined on D
i. Let R' be the result

of selecting from R where ai op vi
. Then

R' (A1 :D1, • • • ,An:Dn) is given by the tuples

(a1, • • • ,an) where (a1, • • • ,an
) E R'

iff it appears in R and ai op vi evaluates

to true.

As another example of SELECT consider the

following. suppose a relation was available which

showed the date employees were hired, the salary they

were hired at and their current salary (Figure 13}. To

find those employees who are currently earning the

68

www.manaraa.com

69

HISTORY

[NAME, ST_PAY, CUR PAY

NAME ST PAY CUR PAY

John Jones 27000 40000

William Smith 28000 28000

Ann Williams 24000 32000

Howard Evans 22000 22000

Robert Field 32000 38500

Paul Jones 40000 40000

HISTORY RELATION

Figure 13

same amount as when they were hired one could use

SAME[NAME, ST_PAY, CUR_PAY} :=

HISTORY WHERE ST_PAY = CUR_PAY.

In this example the equality test involves two attribute

names as opposed to an attribute name and a fixed value.

Every tuple is examined and when the values under these

names are equal that tuple becomes an element of SAME.

Projection

Suppose a user desires a listing of all current

employees and their telephone numbers. The user

essentially wants to extract the columns listing NAME

and TELEPHONE from the relation CURRENT EMPLOYEES

www.manaraa.com

(Figure 6). The projection operator takes that vertical

subset and can be denoted by

NUMS [NAME, TELEPHONE] :=

CURRENT_EMPLOYEES NAME, TELEPHONE] •

The result is listed in Figure 14.

NUMS

NAME TELEPHONE

John Jones 355-1234

William Smith 257-1234

Mary Brown 223-1234
Ann Williams 446-1233
Robert Brown 678-4433
Paul Jones 432-7895

Robert Field 789-5656
Howard Evans 987-8989

NUMS RELATION

Figure 14

Projection "cuts out" the specified columns from a

relation and eliminates any resulting duplicate tuples.

70

www.manaraa.com

DEFINITION: Let R(A1:o1, • • • • ,An:Dn) be a relation and

let A'� { Ak :Ak is an attribute of R:) The

projection of R over A' is the relation

R'(Ai:Di, ... ,Aj:D
J

) where (ai, ... ,aj
) R'

iff a tuple appears in R having ak as its

Ak value for all Ak in A'.

As another example suppose a listing was needed

which showed all cities in which employees live.

LOC [CITY] := CURRENT EMPLOYEES [CITY]

LOC

CITY

Richmond
Goochland
Ashland

LOC RELATION

Figure 15

Since the result of this operation is a relation or set

and a set contains no duplicates, each city is listed

only once, even if several employees reside there.

71

www.manaraa.com

Union

Because relations are simply sets several set

operators can be applied and are very useful. Suppose

for instance a listing was desired of all employees who

work in the Accounting Department or the Development

department. Using SELECT on the relation LOCATION

(Figure 7) two relations can be developed with show the

employees in each department respectively. UNION then

will paste these two tables together yielding the

desired result. This can be denoted by

TEMP! [NAME, DEPARTMENT, DEPT#] :=

LOCATION WHERE DEPARTMENT = 1Accounting•

TEMP2 [NAME, DEPARTMENT, DEPT#] :=

LOCATION WHERE DEPARTMENT = 1Development•

BOTH [NAME, DEPARTMENT, DEPT#] :=

TEMPl UNION TEMP2

The resulting relation is given in Figure 16.

72

www.manaraa.com

BOTH

NAME DEPARTMENT DEPT#

William Smith Development 472

Robert Brown Accounting 4
10

Mary Brown Accounting 4
10

John Jones Development 472

BOTH RELATION

Figure 16

The union operation is performed on two relations

that had the same attributes. The relations involved

are said to be union compatable.

DEFINITION: Two relations R and S are union compatible

iff both are ot degree n and the ith

attribute values of R are drawn from the

same domain as the ith attribute values of

s, for all i, l�i� n.

DEFINITION: Let R(A1:D1, • • • ,�n:Dn) and

S(B1:D1, • • • ,Bn:Dn) be union compatible. The

UNION of R and S is the relation

T(C1:D1, • • • Cn:Dn) where (c1, • • • ,cn)

appears in T iff it appears in R or in S or

in both.

73

www.manaraa.com

Intersection

DEFINITION: Let R(A1:D1, • • • ,An
:D

n) and

S(B1:D1, • • • ,Bn:Dn) be union compatible. The

intersection of R and s is the relation

T(C1:D1, • • • ,Cn:Dn) where (c1, • • • ,cn)

appears in T iff it appears in both R and

in s.

As an example of INTERSECT suppose a relation was

desired which showed all employees who had sons under

the age of 10. SELECT applied to the relation FAMILY

(Figure 10) in two ways can be used to find those

employees that have sons and those who have dependents

under the age of 10. The final result shown in Figure

17 then is the intersection of these two sets of tuples.

This can be denoted by

SONS [NAME, DEPENDENT, RELATION, AGE) :=

FAMILY WHERE RELATION = 'son'

YOUNG [NAME, DEPENDENT, RELATION, AGE) :=

FAMILY WHERE AGE > 10

YOUNG SON [NAME, DEPENDENT, RELATION, AGE) :=

SONS INTERSECT YOUNG

74

www.manaraa.com

YOUNG_SON

NAME DEPENDENT RELATION AGE

John Jones James son 5
Mary Brown James son 5

YOUNG SON RELATION

Figure 17

Minus

Suppose now a table was needed which showed all

employees that work in neither Accounting nor

Development. Using the relation BOTH (Figure 16) the

result can be obtained by

NOT [NAME, DEPARTMENT, DEPT#] :=

LOCATION MINUS BOTH

Minus then takes those tuples in LOCATION and

essentially "cuts out" the ones that appear in BOTH.

DEFINITION: Let R(A1:D1, • • • ,A
n:Dn)

and

S(B1:D1, • • • ,Bn:Dn) be union compatable.

Then R MINUS S is the relation

T(C1:D1, • • • ,Cn:Dn) where (c1, • • • ,cn)

appears in T iff it appears in R but does

not appear in s.

75

www.manaraa.com

Cross Product

It is sometimes helpful to consider the familiar

cross product of the elements of two relations.

DEFINITION: Let R(A1:o1, • • • ,Aro:Dm) and

S(B1:E1, • • • ,Bn:En) be two relations.

R CROSS s then is the set of all tuples

(a1, • • • ,a
m,b1, • • • ,bn) such that (a1, • • • ,a

m
)

appears in R and (b1, • • • ,bn) appears in s.

Suppose, for instance, that the personnel

department had several applications for programming

positions available in various departments in the

company. Two relations showing this information are

listed in Figure 18. The personnel office, wanting to

76

www.manaraa.com

77

APPLICANTS

NAME, POSITION

NAME POSITION

Mary Parks Progranuner
Susan Powell secretary
Louis East Progranuner
Thomas Myer Engineer
Edward Allen Progranuner

AVAILABLE

� ' OPEN

DEPT OPEN

Accounting Lawyer
Engineering Engineer
Personnel secretary
Development Progranuner
Accounting Secretary
Resources Progranuner

APPLICANT AND AVAILABLE RELATIONS

Figure 18

insure that each department that has openings has an

opportunity to view every applicants' credentials, could

construct a table showing every combination of applicant

and department. This can be accomplished by selecting

first those applicants for proyranuning Jobs, then

selecting those departments wanting programmers and then

finally taking the cross product of these two resulting

www.manaraa.com

78

relations. This can be denoted by

PROG [NAME, POSITION] :=

APPLICANTS WHERE POSITION = 'Programmer'

AV_PROG [DEPT, OPEN]:=

AVAILABLE WHERE POSITION = 'Programmer'

ALL [NAME, POSITION, DEPT, OPEN] :=

PROG CROSS AV_PROG

and the result is shown in Figure 19.

ALL

NAME POSITION DEPT OPEN

Mary Parks Programmer Development Programmer
Mary Parks Programmer Resources Programmer
Louis East Programmer Development Programmer
Louis East Programmer Resources Programmer
Edward Allen Programmer Development Programmer
Edward Allen Programmer Resources Programmer

ALL RELATION

Figure 19

www.manaraa.com

Note that there is redundant information listed in

the relation ALL. If a projection was taken on ALL a

duplicate column could be omitted.

In order to "paste" two relations together over

common attribute values the operator JOIN can be used.

DEFINITION: Let R(A1:o1, • • • ,Aro:Dm) and

S(B1:E1, • • • ,Bn:En) be two relations such

that attributes (Ci:Di, • • • ,Cj:Dj) are

common to both. Let op denote any one of

the comparison operators

=, <, <=1 >, >=, <> and let

T(A1 :D1 1 • • • 1Aro:Dm,Bl :E1 1 • • • 1Bn:Dn) be the

result of joining R and s. Then the tuple

(al'"""1cri'"""'crj'"""1am'

b11 • • • 1c .1 • • • ,c . , • . • 1bn) appears
Sl SJ

in T iff crk op csk evaluates to true for

all k, i k j.

The most common comparison operator used in a join

is the equality operator. This operation is designated

79

www.manaraa.com

as the equiJoin. If an equijoin is used two or more

columns of the resulting relation will be exactly the

same. Since having this redundant information is often

undesirable the natural join is defined to be the

equijoin with column duplication eliminated. The use of

the operator JOIN will designate the natural join

throughout this text.

As an example suppose a relation was needed which

listed employee names, their department, department

numbers and supervisors. The needed information is

listed in two separate relations LOCATION (Figure 7) and

SUPERVISORS

[DEPT# , MANAGER

DEPT# MANAGER

423 Adam Parker
472 Lorretta Evans
415 Mary Brown
402 Andrew Burne

450 John Adams

SUPERVISORS RELATION

Figure 20

80

www.manaraa.com

SUPERVISORS (Figure 20) which share a common attribute,

DEPT#. The desired table could be constructed by

joining the two tables over their common attribute DEPT#

and can be denoted by

INFO [NAME, DEPARTMENT, DEPT#, MANAGER] :=

LOCATION JOIN SUPERVISORS

The result is shown in Figure 21.

INfO

NAME DEPARTMENT DEPT# MANAGER

John Jones Engineering 423 Adam Parker
William Smith Development 472 Lorretta Evans
Mary Brown Resources 415 Mary Brown
Ann Williams Personnel 402 Andrew Burne
John Jones Development 472 Lorretta Evans
Paul Jones Engineering 423 Adam Parker
Howard Evans Personnel 402 Andrew Burne
William smith Resources 415 Mary Brown

INFO RELATION

Figure 21

Note that for some reason department number 410 is

not listed in the relation SUPERVISORS. Hence there is

no match for tuples in the relation LOCATION with DEPT#

attribute value 410. These tuples are therefore not

included in the result.

81

www.manaraa.com

suppose now a user wanted to elaborate on the

relation INFO in Figure 21 and include the date an

employee was assigned to that department. The

assignment dates are listed in ASSIGNMENT (Figure 22).

A join can then be performed over these relations which

ASSIGNMENTS

NAME, DEPT#, DATE]

NAME DEPT* DATE

John Jones 423 5/ 5/82
William Smith 472 12/13/83
Mary Brown 415 6/15/84
Ann Williams 402 7/20/82

Robert Brown 410 8/12/83
Mary Brown 410 7/16/81
John Jones 472 2/17/82
Paul Jones 423 10/30/83
Robert Field 411 3/ 2/81
Howard Evans 402 ll/14/82
William Smith 415 12/ 1/81

ASSIGNMENTS RELATION

Figure 22

share two attributes in common, NAME and DEPT#. This

can be denoted by

MORE [NAME, DEPARTMENT, DEPT#, MANAGER, DATE] :=

INFO JOIN ASSIGNMENTS

and the result is shown in Figure 23.

82

www.manaraa.com

83

MORE

NAME DEPARTMENT DEPT# MANAGER DATE

John Jones Engineering 423 Adam Parker 5/ 4/82
William smith Development 472 Loretta Evans 12/13/83
Mary Brown Resources 415 Mary Brown 6/15/84
Ann Williams Personnel 402 Andrew Burne 7/20/82
John Jones Development 472 Loretta Evans 2/17/82
Paul Jones Engineering 423 Adam Parker 10/30/83
Howard Evans Personnel 402 Andrew Burne 11/14/82
William Smith Resources 415 Mary Brown 12/ 1/81

MORE RELATION

Figure 23

Since John Jones, for instance, works for more than one

department the values under both NAME and DEPT# must be

matched before a tuple is constructed.

The Primitive Operators

consider now the relations in Figure 24 which

contain names and department numbers of employees who

serve on various committees in the company. Suppose a

relation was desired which showed names of the employees

www.manaraa.com

84

RESEARCH EM RELATIONS

[� ' DEPT#] [NAME, DEPT#]

NAME DEPT# NAME DEPT#

John Jones 423 Robert Brown 410
Paul Jones 423 Robert Field 411
Robert Brown 410 Ann Williams 402
Ann Hilliams 402 William Smith 472
Howard Evans 402 Paul Jones 423
Andrew Burne 402

RESEARCH AND EM RELATIONS RELATIONS

Figure 24

who serve on both committees. This can be obtained

quite simply by intersecting the two tables in Figure 24

and can be denoted by

BOTH COMM [NAME, DEPT#] :=

RESEARCH INTERSECT EMP RELATIONS

The result is listed in Figure 25.

BOTH COMM

NAME DEPT#

Paul Jones 423
Robert Brown 410
Ann Williams 402

BOTH COMM RELATION

Figure 25

www.manaraa.com

This result can be obtained in another way. consider

the relation obtained by performing the following

operations.

TEMP! [NAME!, DEPT#!, NAME2, DEPT#2) :=

RESEARCH CROSS EM RELATIONS

TEMP2 [NAME!, DEPT#!, NAME2, DEPT#2) :=

TEMP! WHERE NAME! = NAME2

80TH_COMM [NAME, DEPT#!) :=

TEMP2 [NAME, DEPT#!)

Clearly the above three steps result in a relation

equivalent to the one resulting from the intersection

operation. Therefore intersection is not considered a

primitive relational operator and an alternative

definition may be given.

DEFINITION: Let R and s be union compatiable relations.

Then T := R INTERSECT s can be derived

using T
o := R CROSS s

T
l

:= To
WHERE Al = 81

T2 := Tl WHERE A2 = 82

T := Tn-1 WHERE An 8n.

85

www.manaraa.com

A similar argument can be made concerning the join

operations. Consider the relation INFO (Figure 21)

which was derived as the result of a join. If the

following operations were performed an equivalent

relation would be derived.

TEMPl [NAME, DEPARTMENT, DEPT#l, DEPT#2, MANAGER) : =

LOCATION CROSS SUPERVISORS

TEMP2 [NAME, DEPARTMENT, DEPT#, MANAGER :=

TEMPl WHERE DEPT#l = DEPT#2

INFO [NAME, DEPARTMENT, DEPT#, MANAGER) : =

TEMP2 [NAME, DEPARTMENT, DEPT#l, MANAGER)

consequently an alternative definition of the

equiJoin may be given.

86

www.manaraa.com

DEFINITION: Let R and S be two relations and let T be

the result of doing an equijoin on these

relations which have

attributes(C.:D·, ••• ,C··D·) in common. Let
l l J. J

Crk denote a common attribute in R and

Csk denote a common attribute in s. Then

T can be derived using

T
o

Tl

T
2

T

:= R CROSS s

:= To WHERE cri = c
si

:= Tl WHERE cri+l = csi+l

:= T. l WHERE C · =
J -

rJ

Doing a projection on the relation T given in the

definition above results in a relation equivalent to the

natural join. Substituting any other comparison

operator will also result in equivalent joins.

It is clear then any relation derived using an

intersection or join can be derived using alternative

relational operations
61• The other operations then are

considered primitive.

DEFINITION: The primitive relational operators are

PROJECT, SELECT, UNION and MINUS.

87

www.manaraa.com

When designing a database it is necessary to

balance the complexity of the system against the degree

of "user friendliness" the system possesses.

Consequently while the operators JOIN and INTERSECT may

be derived through other means it might be worthwhile to

incorporate them in the system in order to provide the

user with operations that are easy to understand and

use. This is especially true in the case of the natural

join, probably the most commonly used nonprimitive

operator.

Applying the Relational Operators

some of the examples in previous sections have

shown that deriving a desired relation might require

applying operators to intermediate relations. The

following examples illustrate how applying operators in

a series of steps allows the user to extract almost any

amount of information from the database.

88

www.manaraa.com

Example 1: Find the names of all employees living in

Richmond who work for Mary Brown.

Solution: Use the relations shown in Figures 6, 7, 20

TEMPl [NAME, STREET, CITY, ST, TELEPHONE] :=

CURRENT_EMPLOYEES WHERE CITY = 'RICHMOND'

TEMP2 [NAME] := TEMPl [NAME]

TEMP3 [NAME, DEPARTMENT, DEPT# :=

TEMP2 JOIN LOCATION

TEMP4 [NAME, DEPARTMENT, DEPT#, MANAGER :=

TEMP3 JOIN SUPERVISORS

TEMPS [NAME, DEPARTMENT, DEPT#, MANAGER] :=

TEMP4 WHERE MANAGER = 'Mary Brown'

ANSWERl [NAME] := TEMPS [NAME]

ANSWERl

NAME

W illiam smith

89

www.manaraa.com

It could be argued that it would be worthwhile to allow

the system to nest the operators and write the

derivation in one line. For example the above series

of operations could be written as:

ANSWERl [NAME] :=

(((((CURRENT_EMPLOYEES WHERE CITY = 'Richmond')

NAME])JOIN LOCATION) JOIN SUPERVISORS)

WHERE MANAGER = ' Mary Brown') [NAME]

Looking at the inner most sets of parentheses and moving

out it can be verified that the above is equivalent to

the original six step outlined. Of course, this typ·e of

nesting would result in a much more complex system·both

to implement and perhaps to teach to a user. If the

system was to be accessed by people experienced with

writing mathematical expressions the above would

probably be preferred. If, however, the typical user

was not familiar with this type of construct the step by

step application might be more appropriate.

90

www.manaraa.com

Example 2: List the names and telephone numbers of all

employees who have dependent children.

Solution: Use relations in Figures 6,10

TEMP! [NAME, DEPENDENT, RELATION, AGE] :=

FAMILY WHERE RELATION = 'son'

TEMP2 [NAME, DEPENDENT, RELATION, AGE] :=

FAMILY WHERE RELATION = 'daughter'

TEMP3 [NAME, DEPENDENT, RELATION, AGE] :=

TEMP! UNION TEMP2

TEMP4 NAME] := TEMP3 [NAME]

TEMPS [NAME, STREET, CITY, ST, TELEPHONE] :=

CURRENT_EMPLOYEES JOIN TEMP4

ANSWER2 [NAME, TELEPHONE] :=

TEMPS [NAME, TELEPHONE

Alternatively, using nested operators

ANSWER2 [NAME, TELEPHONE] :=

((((FAMILY WHERE RELATION = 'son') UNION

(FAMILY WHERE RELATION = 'daughter'))

[NAME]) JOIN CURRENT_EMPLOYEES)

[NAME,TELEPHONE]

91

www.manaraa.com

ANSWER2

NAME TELEPHONE

John Jones 355-1234
William smith 257-1234
Mary Brown 223-1234
Howard Evans 987-8989

Example 3: Find the names of all employees who work for

more than one department.

Solution: Use the relations in Figure 7.

LOCl [NAMEl, DEPT#!] :=

LOCATION [NAME, DEPT#]

LOC2 [NAME2, DEPT#2] :=

LOCATION [NAME, DEPT#

TEMPl [NAME! I DEPT# 1 I NAME2 I DEPT# 2] : =

LOCl CROSS LOC2

TEMP2 [NAME! 1 DEPT#l 1 NAME2, OEPT#2) :=

TEMP! WHERE NAME! = NAME2

TEMP3 [NAME!, DEPT#l, NAME2, DEPT#2] :=

TEMP2 WHERE DEPT#! <> DEPT#2

ANSWER3 [NAME] := TEMP3 [NAME]

ANSWER3

NAME

John Jones
William smith
Mary Brown

92

www.manaraa.com

In Example 3 the first two steps are necessary in order

to rename the attributes differently so the result of

crossing the two equivalent relations will have four

distinct attribute names. Even in a system which

supports nesting of operations then, these steps must be

separate.

It is clear then that even in more complicated

derivations the user can continue to view the process as

simply "pasting and cutting" tables in order to

construct new tables. once the user has become familiar

with the syntax of each operation there should be little

or no problem with the understanding of how they work.

Dangers in Applying Relational Operators

All of the examples given previously in this

chapter have resulted in relations which gave accurate

information. In some cases however, an indiscriminate

application of relational operators could lead to

invalid conclusions.

suppose a relation was given which described

government contracts the company has. Listed would be

the project name, the employee in charge of the

93

www.manaraa.com

94

CONTRACTS

[PROJECT, MANAGER, DEPT# 1

PROJECT MANAGER DEPT#

Radar Design John Jones 423
Error Control William Smith 415
Cost Effectiveness Mary Brown 410
System Design Paul Jones 423

CONTRACTS RELATION

Figure 26

project and the number of the department responsible for

that prOJect (Figure 26). Consider now the following

projection taken over this relation.

CONTRACT2 [NAME, DEPT# 1 :=

CONTRACTS [MANAGER, DEPT# 1

CONTRACT2

NAME DEPT#

John Jones 423
William Smith 415
Mary Brown 410
Paul Jones 423

CONTRACT2 RELATION

Figure 27

www.manaraa.com

The resulting relation (Figure 27) implies that John

Jones works for department 423. By examining the

relation LOCATION (Figure 7) however, it is clear that

this employee is working for department 472 as well.

The relation CONTRACT2 then is incomplete and

consequently invalid.

In a similar way incorrect results can be derived

through the use of JOIN. suppose a relation describing

where departmental offices are located in the company

OFJ.o'ICE

[DEPT#, WING]

DEPT# WING

423 East
415 North
410 south
472 North
402 west
411 west

OFfiCE RELATION

Figure 28

complex (Figure 28) was joined with the relation

LOCATION.

95

www.manaraa.com

OFFICE2 [NAME, DEPARTMENT, DEPT#] :=

LOCATION JOIN OFFICE

0Fl''ICE2

NAME DEPARTMENT DEPT# WING

John Jones Engineering 423 East
William Smith Development 472 North
Mary Brown Resources 415 North
Ann Williams Personnel 402 west
Robert Brown Accounting 410 south
Mary Brown Accounting 410 south
John Jones Development 472 North
Paul Jones Engineering 423 East
Robert Field Maintenance 4ll west
Howard Evans Personnel 402 west
William Smith Resources 415 North

OFFICE2 RELATION

Figure 29

Note that OFFICE2 (Figure 29) implies that John Jones

has an office in both the East and North wings of the

complex when in reality he might have an office in only

one. Again an inaccurate, invalid relation has been

derived.

In both cases the questionable relations are the

result of the associations among attributes in the

relations CONTRACTS and LOCATION. In each case an

96

www.manaraa.com

employee can be associated with more than one

department. This can be denoted by NAME ->-> DEPT#

where the double arrow implies a one-to-many

association. When relations are designed which contain

this type of dependency care should be taken by the

users to avoid possible invalid results
62

• Of course

if the user carefully labels any resulting relations

ambiguities could be eliminated. For instance in the

relation in Figure 29 if the WING attribute was renamed

to reflect more clearly that it designates the location

of the department and not necessarily the employee the

relation would no longer be considered inaccurate. It

is imperative then that the users clearly understand the

relations and the relationships that exist among the

data items in the relations in order to avoid invalid

results.

97

www.manaraa.com

NULL AND DEFAULT VALUE�

Suppose a user in a personnel department is

entering a new tuple in a relation describing employees

in a company. The user will be prompted for the

employee's social security number, name, telephone

number and address. It would not be uncommon however,

that the personnel department would not have all the

information needed at the time it would be convenient to

include an employee in the data base. The employee's

telephone, for instance, might not be installed if the

employee is new to the area. The question then is how

the relation can represent these unknown values.

In general a null value for an attribute is a value

which is unknown at the time it is observed. In the

physical setting the null value can be represented by a

bit pattern distinguishable from any value in the

attribute's domain. The use of null values supports

allowing a user to enter a tuple when attribute values

are not known. It also allows the addition of a new

attribute to a relation without supplying all the

attribute values beforehand
63

• Note the null value is

not a member of the attribute's domain but merely

denotes value unknown. Recall, however, that the use of

nulls is restricted to attributes which are not part of

the primary key of any relation in the system.

98

www.manaraa.com

The use of null values introduces some interesting

complications to the data base system. Consider for

instance the truth value of x = y if x or y or both are

null. Clearly the answer is unknown or null. In order

to support nulls then the meaning of each relational

op�rator must be extended in order to handle null values

in a predefined way64.

Consider an example where it might be appropriate

to include nulls. Suppose two relations in a hospital

data base were available which showed patient name and

operation in OP and surgeon name and the operation that

surgeon performs in SURG (this example assumes that a

surgeon performs only one operation).

OP SURG

NAME, OPERATION] [SURG NAME, OPERATION]

NAHE OPERATION SURG NAME OPERATION

John Jones Tonsils Richard Keenan Tonsils
Robert Smith CVG Frank Kane CVG
Ann Dunhill ? Betty Tyler ?

Robert Dean XRAY

OP AND SURG RELATIONS

Figure 30

Note that the operation description was not known when

99

www.manaraa.com

the tuple for Ann Dunhill was entered and, hence, it is

null. Suppose the user wants a relation showing those

patients with incomplete information. The SELECT

operator can not be used since the comparison involved

must compare an attribute name and a value from the

attribute's domain. Since null is not an element of any

domain the user in fact could not select those tuples

where the comparison involves a null. Consequently the

SELECT operator must be extended to consider the null

values. MAYBE SELECT chooses those tuples where nulls

appear in the given attribute. This can be denoted by

MAYBE OP NAME, OPERATION] :=

OP WHERE MAYBE

and the result is shown in Fiyure 31.

MAYBE OP

NAME OPERATION

Ann Dunhill ?

MAYBE OP RELATION

Figure 31

OPERATION]

100

www.manaraa.com

101

Suppose now a user wants a relation which showed

patient name, operation and surgeon. A natural join of

OP and SURG would result in the relation shown in

Figure 32.

PAT_SURG

NAME OPERATION SURG NAME

John Jones Tonsils Richard Keenan
Robert Smith CVG Frank Kane

PAT_SURG RELATION

Figure 32

Note that patient Ann Dunhill does not appear in

PAT SURG since the truth value of comparing a null with

any other value is unknown and not true. A similiar

argument can be made concerning the surgeon Betty Tyler.

The user however might want that information included in

the result, perhaps reminding the user to update the

relations OP and SURG. The OUTER JOIN accomplishes this

by including in the resulting relation not only those

tuples that result in a match but those that do not,

extended with null attribute values. This can be

denoted by

PAT SURG2 [NAME, OP, SURG_NAME] :=

OP OUTER JOIN SURG

www.manaraa.com

The result is listed in Figure 33.

PAT_SURG2

NAME OP SURG NAME

John Jones Tonsils Richard Keenan
Robert Smith CVG Frank Kane
Ann Dunhill ? ?

? ? Betty Tyler
Robert Dean XAAY ?

PAT SURG2 RELATION

Figure 33

Similiar extensions can be made to all of the

relational operators. It is clear that nulls serve an

important purpose in a relational data base but their

use results in adding some possibly confusing

complications into the system. Consider again SELECT.

In order to get all tuples with an attribute value not

equal to a given value the user must SELECT using <> and

then UNION that relation with the result of a

MAYBE_SELECT. The user must also be thoroughly aware of

the correct interpretation of null. Suppose in the

example of OUTER
_

JOIN given earlier that the fact that

the operation XRAY does not appear in SURG implies

merely that this procedure does not require a surueon.

The result of the OUTER
_

JOIN however implies that those

null surgeon names are the result of a missing, unknown

value. The user must be aware of this dual

102

www.manaraa.com

interpretation and take care to respond to the results

accordingly.

The use of nulls also introduces some

implementation problems. A null value can be

represented by a value that is known not to belong to

that attribute's domain. For instance if the attribute

is salary -1 could be used. If, however, it is not safe

to choose a value in that way a hidden field could be

used. This hidden field, one associated with each

attribute in each relation, could be set to 1 if the

associated field value is null. This, of course, would

require extra storage, additional seeks and extra

programming. In either case, the application programmer

must be aware of each possible representaion of null

values and program accordingly. Consider, for instance,

the followiny lines of code which intuitively suggest

that SUB PROG will always be executed.

If Y = Y Then

Execute SUB_PROG

But will the application programmer want SUB PROG to be

executed if Y is null? Recall that the truth value of

y = Y is unknown if Y is null. Hence, the programmer

must take that into account. Suppose now the appliation

programmer was sorting the relation by a particular

field that could be null. The programmer must take

appropriate precautions to insure that tuples with nulls

103

www.manaraa.com

are sorted in a way that makes sense.

Many of the complications discussed above are the

result of the fact that the null value is not a member

of an attribute's domain. This subtle distinction and

its ramifications must be made clear to the users in

order to insure the full, correct use of the data base

system.

An alternate method oE �epresenting unknown values

in a relational data base is to use default values. In

this implementation each attribute that may accept

unknown values has a default value in its domain that

indicates the value is unknown
65. For instance, if a

patient's operation was not known at entry time this

could be represented by a domain value of "unknown".

This default value must be clearly defined as the

default. If a user tries to insert a tuple with a

missing attribute that does not have a default it must

be rejected.

several of the complications introduced by the use

of nulls now no longer pose a problem. In general the

truth value x = y is now either true or false. The

MAYBE_SELECT operator is therefore no longer needed.

Because there is no longer any ambiguity involved in

saying x = y application proyrams will be more

straightforward. Consideration must still be made for

default values but in an obvious way.

104

www.manaraa.com

105

Note the OUTER JOIN is still aaolicable but now
- � �

detault values will be generated for the appropriate

unknown attribute values. The user must still be aware

of the differences in meaning when seeing these default

values in the result of an OUTER JOIN.

Since the default values belong to the attribute's

domain they behave in more predictable ways. It is

therefore the more satisfactory approach to representing

unknown values in a relational data base66•

www.manaraa.com

REFERENCES

60Date, c. J. , An Introduction to Database Systems,
3d ed., (Reading, Mass.: Addison-Wesley, 1982) p. 60.

61
Ibid., p. 215.

62
M t. J C . . ar 1n, ames, omputer Data Base Organ1zat1on,

2d ed., (Englewood Cliffs, N.J.: Prentice-Hall, 1977)
p. 221.

63
Date, c. J. , An Introduction to Database Systems,

Volume II, (Reading, Mass.: Addison-Wesley, 1983)
p. 210.

64
Ibid. P• 221.

65
Ibid. p. 225.

66
Ibid. P• 226.

106

www.manaraa.com

CHAPTER 6

NORMAL FORMS

When designing a logical data base description it

would be helpful to have some way to insure that the

design is consistent with the goal of maintaining

accurate data. Normal form theory provides a method by

which the designer of a data base can check the

design
67

• This theory formalizes what intuitively

appears to be a sound basis foe design.

To illustrate the benefits of having a relational

design satisfy various normal forms the design of an

employment ayency's data base will be considered.

Information included will be the personal data

concerning an employment candidate (name, social

security number, address, etc.), the candidate's skills

and background, information concerning the jobs that are

open as well as data about the employment agents

themselves.

107

www.manaraa.com

108

FIRST NORMAL fORM

It has already been noted in the definition of a

relation (Chapter 5) that any attribute value listed in

a tuple of a relation must be a single valued member of

the domain of the given attribute.

DEfiNITION: A relation is in First Normal Form iff it

contains atomic values only.

Consider then a relation which will contain skills that

each candidate has. Certainly one candidate might have

several skills.· A reasonable relation then would be

SKILLS shown in Figure 34.

SKILLS

[SOC.SEC.#, SKILL]

SOC.SEC.# SKILL

123456789 Typing
234567890 Steno
234567890 Typing
234567890 Filing

SKILLS RELATION

Figure 34

www.manaraa.com

Note that in this relation the entire tuple is the key

and that to list all the skills for one candidate that

candidate's social security number might appear several

times.

FUNCTIONAL DEPENDENCI�S

Before proceeding it is necessary to define any

dependencies that exist among the attributes of a tuple.

Consider a relation that includes information

concerning JOb listings the agency now has:

CO INFO

[COMPANY NAME, POSITION, COMPANY_LOC, SALARY, STATUS]

Suppose that STATUS is determined independently by both

the salary and the position in the company, i.e. a

system analyst at company X making $30,000 is classified

as professional both because the position at the company

is classified as such and because of the salary range.

Intuitively it is clear that COMPANY_LOC depends on

COMPANY NAME. More rigorously, COMPANY_LOC is

functionally dependent on COMPANY NAME.

109

www.manaraa.com

DEFINITION: Given a relation R and sets of attributes A

and B, B of R is functionally dependent on

A of R iff each A value in R has associated

with it at most one B value in R at any

one time.

For example suppose Company X is listed as being located

in New York City. Then since COMPANY_LOC is

functionally dependent on COMPANY_NAME each time Company

X appears under COMPANY_NAME, New York City will appear

under COMPANY LOC. This is denoted by

COMPANY NAME -> COMPANY LOC. - -

Now since COMPANY_NAME and POSITION form the key of

the relation it is indeed true that COMPANY_LOC is

functionally dependent on the key as well as on

COMPANY NAME. COMPANY_LOC, however is said to be fully

functionally dependent on COMPANY_NAME and COMPANY NAME

is referred to as a determinant.

DEFINITION: B is fully functionally dependent on A iff

it is functionally dependent on A and not

110

functionally dependent on any proper subset

of A.

DEFINITION: A is a determinant iff there exists some
, ·>o<.:.J\:r\ , '.· : '.lO<�t l •:.:n.!lll:_.·

other attribute B such that B i� .

f u 11 y function a.. ;L,,�X:' �e:��l1�����$���h��,�:,

www.manaraa.com

Henceforth the term functionally dependent will imply

fully functionally dependent and will be denoted by

A -> B.

There are several other functional dependencies in

the relation CO_INFO. These can be summed up in a

functional dependency diagram shown in Figure 35.

--�----------��NY_�

CO_INfO FUNCTIONAL DEPENDENCY DIAGRAM

Figure 35

111

The large bubble denotes a set of attributes. The fact

that COMPANY LOC is functionally dependent on a subset

of that set is denoted by the fact that the arrow starts

at the attribute COMPANY_NAME rather than from the

outside of the bubble as for SALARY.

It is clear then that SALARY is functionally

www.manaraa.com

dependent on the key. Also shown in the diagram is the

tact that STATUS is indep�ndently functionally dependent

on both (NAME, POSITION) and (SALARY).

The functional dependency diagram is a helpful tool

for clearly, concisely showing the functional

dependencies in a relation.

SECOND NORMAL FORM

Consider the relation co_INFO (Figure 35). There

are several problems with the design of this relation.

It is not unreasonable, for instance, to suppose the

employment agency would want to maintain information

involving companies that might not presently have

openings. As the relation is now defined it would be

impossible to list that data. As soon as a position is

filled that record would be deleted and if that was the

only position at the company listed all information

pertaining to that company would be lost. Clearly this

is undesirable.

112

Suppose also that there are several positions open

in a given company and that the co111pany changes its

location. In order to update that data in CO INFO a

search would have to be made for each occurrence of that

www.manaraa.com

company and the tuple updated. This can jeopardize the

accuracy of the data base if the update is done

incompletely or incorrectly.

The potential for these problems is attributed to

the same cause. As can be seen in the functional

dependency diagram (Figure 35) the attribute COMPANY_LOC

is functionally dependent on a subset of the key. It is

this type of situation that is addressed in the

definition of second normal form.

113

DEFINITION: A relation R is in second normal form iff

it is in first normal form and every nonkey

·attribute is functionally dependent on the

primary key.

The relation co INFO then violates second normal

form because COMPANY LOCATION is functionally dependent

on a subset of the key.

co INFO can be decomposed into smaller relations

without any loss of information in the following way.

www.manaraa.com

114

CO LOC JOB_INFO

[NAME, LOCATION] NAME, POSITION, SALARY, STATUS]

�A3 ><§cAT�ov

DECOMPOSITION OF CO INFO RELATION

Figure 36

It is clear that when the company's location

changes only one update need be made to the data base.

Information can also now be maintained about companies

that do not have active job listings.

THIRD NORMAL FORM

Consider now the relation JOB_INFO (Figure 36).

Each nonkey attribute is functionally dependent on the

key but the attribute STATUS is also functionally

dependent on the attribute SALARY. The functional

dependency of STATUS on the key is said then to be

transitive through the attribute SALARY. Each key value

determines a SALARY and this then determines a STATUS.

www.manaraa.com

This transitivity property among the attributes can be a

source of problems.

Suppose, for instance, that the status levels were

to be reconstructed due to, say, a cost of living

adJustment. In order to do so each record would have to

be searched for the status that was updated causing

again the possibility for error or inconsistency.

Consider also if a company's job was filled and

that record was the only record with that status level.

When the record was deleted all information concerning

the salary level and the status would be lost. These

�otential problems are the result of the transitive

dependencies that exist in JOB INFO. Third normal form

addresses this issue.

DEFINITION: A relation is in third normal form iff it

is in first normal form and every nonkey

attribute is nontransitively dependent on

the primary key.

Attributes in a relation that satisfies third

normal form then are facts about the key and nothing

else
68

• The attribute STATUS can be deleted from

JOB INFO and dealt with in another relation.

115

www.manaraa.com

JOB SAL_ INFO

NAME, PO�ITION, SALARY] [SALARY, STATUS]

��

DECOMPO�ITION OF JOB_INFO

Figure 37

These two new relations provide the same information and

satisfy both second and third normal forms. Now when an

update needs to be made to a status level relevant

records can be directly revised. Also information

�ertaining to levels not currently active can be

maintained.

NONLOSS DECOMPOSITION Of RELATIONS

Throughout the previous sections the concept of

decomposing a relation without losing any information

was used. very often it is intuitively clear how to do

this but in some cases guidelines can be helpful.

Consider again the relation JOB_INFO (Figure 36)

and its functional dependency diagram. Since JOB INFO

116

www.manaraa.com

does not satisfy third normal form it wou
.
ld be

advantageous to decompose this relation into two smaller

relations that do satisfy third normal form. In the

last section the decomposition in Figure 37

(Decomposition I) was used. An alternative

decomposition is shown in Figure 38.

DECOMPOSITION II

JOB STATUS

[CO NAME, POSITION, SALARY]

JOB STATUS

[CO NAME, POSITION, STATUS]

ALTERNATIVE DECOMPOSITION OF JOB INFO

Figure 38

117

The first question which must be askect is do these

two decompositions provide the same information as the

ori�inal relation JOB INFO did. A method to check this

www.manaraa.com

is to do a JOin over common attributes and determine if

the original data can be retrieved. It can be verified

in both cases that this is indeed the case. consider

however a third decmnposition shown in Figure 39.

DECOMPOSITION III

JOB_STATUS SAL STATUS

118

NAME, POSITION, STATUS] [SALARY, STATUS]

ALTERNATIVE DECOMPOSITON OF JOB INFO

Figure 39

It can be verified that this decomposition is not

lossless because it is possible for several salaries to

have the same status and hence it would not be possible

to recreate the exact salary associated with a

particular position at the company. Clearly this is

unacceptable.

Consider again Decompositions I and II. The data

base designer when choosing one over the other would

hope that in addition to not losing any information

www.manaraa.com

119

that new situations are not created that jeopardize the

data's accuracy. For example, in Decomposition II if

an update was made to a salary in JOB SALARY a

mechanism must be set up to insure that the functional

dependency {NAME, POSITION) -> STATUS is not violated

because recall status is functionally dependent on both

the salary and the �osition in a company. In

Decomposition II then the two relations are dependent,

an update to one can effect the validity of the other.

Consider Decomposition I however. If salary is updated

for a particular position only one change need be made

to the data base. The STATUS functional dependency is

automatically enforced.

Decomposition I involves independent relations.

This is the result of defining the relations in such a

way so that the common attribute SALARY is the key for

one of the relations • The original functional

dependency {NAME, POSITION) -> STATUS then can be

logically deduced from the dependencies generated in

Decomposition I.

www.manaraa.com

A guideline, then, for decomposing a relation R

into Rl and R2 is to insure

i) every functional dependency in R can be

deduced from Rl and R2

ii) the common attributes of Rl and R2 form a

candidate key for at least one of Rl and

R2

iii) it is a nonloss decomposition69.

In this way relations can be developed that

satisfy various normal forms and at the same time do

not lose any information originally provided nor cause

their own set of update problems.

BOYCE/CODD NORMAL FORM

Consider now a relation that would contain

information pertaining to the agents of the employment

agency. certain constraints could be placed upon the

assignments of the agents such as

1. All jobs of a certain type in a given company

are handled by the same agent.

2. Each agent handles only one type of job (i.e.

will fill only programmer positions).

3. Each type of job can be handled by several

agents.

Each tuple in the relation AGNTS (Figure 40) would

provide the information that a specified JOb type is

120

www.manaraa.com

available in a specified company and handled by a

specified ayent. Note that there are two candidate

keys for this relation, (TYPE, COMPANY) and

(COMPANY, AGENT) and the former was chosen

as the primary key.

AGNTS

[TYPE, COMPANY, AGENT

FUNCTIONAL DEPENDENCY DIAGRAM FOR AGNTS RELATION

Figure 40

While TYPE is indeed transitively dependent on the

key it is itself a key attribute. Hence, the above

relation satisfies third normal form. Consider however

what would happen if a JOb listing was deleted from

this relation. The information that a certain agent

handles that job type could be lost. This is the

result of having overlapping candidate keys with a

determinant involving a subset of those keys.

Boyce/Codd normal form recognizes this abnormality with

121

www.manaraa.com

�elations that are acceptable under third normal form

and is a stronger defintion of third normal form
70

•

DEFINITION: A relation is in Boyce;Codd normal form

iff every determinant is a candidate key.

The relation AGNTS can be easily decomposed into

relations that satisfy Boyce/Codd normal form

(Figure 41).

AGNT CO AGENT

[AGENT, TYPE) [COMPANY, AGENT)

CO TYPE

[COMPANY, TYPE)

DECOMPOSITION Uf AGNT RELATION

Figure 41

suppose now that the second constraint is removed.

Agents can now handle several job types and the fact

that an agent is assigned a job type is no longer

important. A relation similar to AGNT can be defined

with candidate keys (TYPE, COMPANY) and

122

www.manaraa.com

(AGENT, COMPANY). The functional dependency diagram

for the information now defining agents and their

responsibilities is shown is Figure 42. Note now

AGNT2

[COMPANY, TYPE, AGENT]

FUNCTIONAL DEPENDENCY DIAGRAM FOR RELATION AGNT2

Figure 42

that there are overlapping candidate keys but since the

keys are the only determinants Boyce/Codd Normal Form

is satisfied. The deletion of a job in a company would

not result in the lose of any meaningful information.

FOURTH NORMAL FORM

Suppose data is to be maintained concerning

certain computing skills candidates might have. A

table of that information is given in Figure 43.

123

www.manaraa.com

NAME LANGUAGES MACHINES

smith r'ortran IBM
Assembler
Basic

Jones Pascal IBM
Digital

TABLE OF COMPUTER SKILLS

r'igure 43

It has been assumed that languages and machines

are independent of each other. In order to normalize

124

the table in Figure 43 a cross product must be taken of

Lanyuages and M achines resulting in the relation shown

in r'igure 44.

SKILLS

NAME, LANGUAGES, MACHINES]

NAME LANGUAGES MACHINES

smith Fortran IBM
Smith Basic IBM
Smith Assembler IBM
Jones Pascal IBM
Jones Pascal Digital

SKILLS RELATION

Figure 44

The key of the relation SKILLS is the entire tuple and

it is clear that the above satisfies Boyce/Codd Normal

www.manaraa.com

Form.

There are certainly no functional dependencies in

the relation but it is apparent that for each NAME

value there is a well defined set of languages

associated with it independent of the set of MACHINES

also associated with it. LANGUAGES then is

multidependent on NAME and is denoted by

NAME ->-> LANGUAGES.

125

DEFINITION: Given a relation R with sets of attributes

A,B,C the multivalued dependence A ->-> B

holds in R iff the set of B values

matching a given (A,C) pair in R depends

only on the A value is independent of the

c value.

Note that in order to have a multivalued dependency

there must be at least 3 sets of attributes in the

relation.

In addition to NAME ->-> LANGUAGES there is the

multivalued dependency NAME ->-> COMPUTERS. This can

be denoted as NAME ->-> LANGUAGES COMPUTERS.

There are several problems with the relation as it

is now defined. If, tor example, a new Language for a

www.manaraa.com

126

particular candidate was to be included several inserts

would have to be made, one for each computer. similarly

to delete a language would involve the deletion of

several tuples. Clearly this is undesirable in order

to maintain the data's accuracy. Fourth normal form

addresses this problem.

DEFINITION: R is in Fourth Normal Form iff the only

dependencies in R are functional

dependencies from a candidate key to an

attribute.

In other words Fourth Normal Form requires that the

only determinants in the relation are the key and ·that

no multivalued dependencies exist. The relation SKILLS

can be easily broken up into relations

LANG [NAME, LANGUAGE] and COMP NAME, COMPUTER]

where the entire tuple is the key and since there are

only two attributes in each there are no multivalued

dependencies.

www.manaraa.com

127

FIFTH NORMAL FORM

Consider again a relation that describes the agent

information. Suppose the constraint is that if an

agent finds JObs of a certain type and deals with a

company that has jobs of that type then he attempts to

place candidates in Jobs of that type for that company.

The relation AGNT is shown in Figure 45.

AGNT

NAME, TYPE, COMPANY]

NAME TYPE COMPANY

Smith Programmer A
Smith secretary B

Jones secretary A

Jones secretary B

AGENT RELATION

Figure 45

The tuple (Smith, Programmer, A) then means that agent

smith is trying to fill the programmer position at

Company A. The entire tuple is the key and all

attributes are needed to convey the information.

Furthermore it can not be said that there are

www.manaraa.com

128

multivalued dependencies in this relation because

attributes TYPE and COMPANY are not independent.

There are problems in updating this relation.

Consider inserting the tuple (Jones, Programmer, B).

What this is saying is that Company B has a programmer

job available and Jones will try to fill it. But Smith

also fills programmer jobs and handles Company B so the

tuple (Smith, Programmer, B) must also be inserted.

Similar situations arise upon deleting a tuple.

Clearly these types of updates are undesirable because

they can be easily done incompletely.

In the previous examples of normal forms it has

been a nearly trivial matter to decompose the relations

into smaller relations satisfying normal forms yet

providing the same information. In this case however

care must be taken. Consider for instance the

decomposition shown in Figure 46.

ONE TWO
NAME, TYPE [TYPE, COMPANY]

INVALID DECOMPOSITION OF RELATION AGNT

figure 46

www.manaraa.com

129

These two relations will not provide all the

information originally �rovided. Just because Smith

deals with programmer JObs and there is a programmer

JOb at Company c does not imply smith will try to fill

that position. smith may not represent that company.

If however another relation (F'igure 47) was constructed

a series of JOins can reconstruct the original

relation.

ONE TWO

NAME, TYPE TYPE, COMPANY]

THREE

[COMPANY, NAME

VALID DECOMPOSITION OF AGNTS

Figure 47

AGNT (Figure 45) then satisfies a JOih dependency since

it can be reconstructed from·the join of certain of its

proJections.

DEFINITION: R satisfies the join dependency

*(X,Y, • • • ,Z) iff it is the JOin of its

proJections on X,Y, • • • ,z where X,Y, • • • ,z

are subsets of the attributes of R.

www.manaraa.com

AGNT then satisfies the JOin dependency

*((NAME,TYPE),(TYPE,CO),(CO,NAME)).

Of course several relations can be decomposed this

way. Consider a relation PERSON defined as

PERSON [SS*, STREET, CITY, STATE] • Clearly PERSON

satisfies the JOin dependency

130

((SS,STREET) ,(SS*,CITY),(SS#,STATE)) but there is no

advantage in decomposing the relation in this way since

there are no update or deletion problems in PERSON.

The JOin dependency here is implied by the key and the

decomposition is not necessary. Fifth Normal Form

formalizes this concept.

DEFINITION: R is in Fifth Normal Form iff every join

dependency in R is implied by the

candidate keys of R.

Unfortunately finding the JOin dependencies in a

relation is a nontrival task. Caution should be taken

when a relation is developed that contains interrelated

multivalued facts7l, i.e. one agent can deal with

several types of JObs which can be placed in several

different companies. When relations of this type arise

the designer should carefully attempt to find any

dependencies that exist and modify the relation if

www.manaraa.com

necessary.

By verifying that each relation in the data base's

logical aesiyn satisfies the various normal forms

several potential abnormalities can be safely avoided.

131

www.manaraa.com

REFERENCES

67
Date, c. J., An Introduction to Database Systems,

3d ed., (Reading, Mass.: Addison-Wesley, 1982) p. 479.

68 . J c
. .

Martln, ames, omputer Data Base Organlzatlon,
2d ed., (Englewood Cliffs, N.J.: Prentice-Hall, 1977)
p. 242.

69
Date, p. 2 54.

70
Ibid., p. 249.

71
Ibid., p. 263.

132

www.manaraa.com

CHAPTER 7

DEVELOPMENT OF A DATA BASE

In the Department of Mathematical sciences at

Virginia Commonwealth University a manual system for

scheduling classes is currently used. This method

involves filling in a grid showing classes being offered

with faculty assigned to teach the classes. The choice

of faculty member to teach a particular class is based

on several criteria. The Associate Chairman of the

department, who is responsible for the schedule, must

constantly keep in mind these criteria and insure they

are met. It is hoped that a computerized mechanism can

be developed to aid the Associate Chairman in this time

consuming task.

DESCRIPTION OF THE PROBLEM

In order to design a computer system to assist in

the scheduling process it was necessary to first define

the manual system currently used and list the criteria

133

www.manaraa.com

involved. The following describes the steps now

followed to develop the schedule.

The Department of Mathematical Sciences contains

three divisions Statistics, computer science and

Mathematics. Each class offered through this department

is designated as a class in one of these divisions.

Calculus, tor instance will be listed as MAT 200

indicating it is a Mathematics course at the 200 level.

operating Systems is designated as CSC 601 indicating it

is an yraduate level Computer science course.

Early in the semester preceding the semester to be

scheduled classes which will be offered are determined.

Most offerings remain the same from year to year. For

instance the Fall, 1985 schedule will mirror the Fall,

1984 schedule especially for lower level classes. The

faculty generally decide any changes in upper level

classes offered and inform the Associate Chairman.

134

Consequently, one year's schedule of class

offerings is used as a basis for the following year's.

Deletions, insertions and modifications are made to that

schedule in order to produce the new version. A grid is

set up, one for each day of the week, showing the

classes offered.

Generally the faculty in each discipline determine

among themselves who will probably teach the various

upper level courses (300 and up). They then inform the

www.manaraa.com

Associate Chairman of their decisions and the grid is

filled in accordingly.

After the upper level classes have been scheduled

the lower level classes are assigned. In some cases the

faculty also determine the assignment for some of these

classes. For instance the Computer science members

might decide among themselves who will teach certain

lower level Computer Science courses knowing that each

must teach one or more of them. The Associate Chairman

will assign these accordingly.

Even after these assignments have been made however

several classes will still need to be assigned. The

decision as to who will teach these unassigned courses

is based on the criteria listed below.

Criteria for Scheduling Decisions

1. some faculty members will be better suited to teach

a particular class than others. This is generally

determined by the special field or discipline that the

class covers. For instance, certain faculty members

would be better suited to teach classes in applied

mathematics than topology. Upper level classes are

generally taught by faculty in the corresponding

dis�ipline. situations where this is not the case are

almost always decided ahead of time. For instance a

special topics course in computer science could indeed

135

www.manaraa.com

be taught by someone with a Statistics background but

this would be generally be determined and scheduled well

in advance.

136

2. Associated with each faculty member is a number

which determines the maximum number of courses that

faculty member could be assigned. Full time, tenure

track faculty, for instance, usually teach three

classes. Of course if that faculty member is on

sabbatical that number could be one or even none. Other

full time faculty could be assigned up to four classes

and adjuncts one or two. Consequently when assigning a

faculty member to a particular course care must be taken

to insure that that faculty member has not already been

assigned the maximum.

3. An attempt is made to insure that faculty members'

schedules are not too cumbersome. For instance it could

be inconvenient if it was necessary for someone to teach

four niyhts of the week. Generally then faculty are

assigned evening classes only two days a week. Also in

order to give full time faculty member time to do

research an attempt is made to insure each faculty

member has one weekday off.

4. some faculty will not be available to teach at

specific times. For instance most adjunct faculty are

www.manaraa.com

available to teach evening classes only.

A RELATIONAL DATA BASE AS A BASIS FOR

SCHEDULING SYSTEM DESIGN

In order to design a system that could be used as a

tool in the scheduling process sev�ral approaches could

be taken. It would not be very difficult to build one

or more files containing the required data and then

write an application program based on these files to

provide the information required in ·the scheduling

process. These files could be updated when necessary

and the application program rerun each semester.

Consider, however, some of the data needed in order

to solve the scheduling problem. Clearly much of this

data can be applied to other areas of concern within the

Department of Mathematical Sciences. For instance

suppose the Chairman of the department needed a simple

listing of all faculty names and the classes they will

teach the next semester. Most likely this data can be

derived from one or more of the files used in the

scheduling system. The Chairman would then request that

a programmer, tamiliar with the design of the scheduling

system, write the necessary program. Of course this

programmer might not be readily available and

consequently the Chairman would probably resort to

137

www.manaraa.com

manually listing the needed information. This time

consumming task could have been avoided if the .

scheduling system was designed in a way so that

unanticipated requests could be easily and quickly

answered by an inexperienced user.

138

In order to make the best use of the data needed to

solve the scheduling problem a relational data base

system was chosen as a basis for the system. In that

way the questions posed by the scheduling process could

be addressed as well as any unanticipated questions that

could be answered using the same data.

The use of a relational data base system also

supports future additions of data to the system as the

need arises. Suppose tor instance that an automated

process was desired to provide information concerning

textbooks used by each class otffered by the department

in any given semester. Rather then build an entirely

new system to support this new process the data base

designeer could expand the logical and physical designs

of the data base to include this information, update the

DML where necessary and inform the users that this

information is now available. Any existing software

would continue to run without users being aware of any

changes made.

www.manaraa.com

The system then will not be a scheduling process

but a general data base providing information about

faculty and classes in the Department of Mathematical

sciences.

DATA NEEDED TO SOLVE THE PROBLEM

In order to set up the logical level of the

relational data base it is necessary to consider what

data items will be needed. It would be helpful as well

to consider any additional information that the system

might maintain, not necessarily for the scheduling

process but for future requests. For example, the

scheduling problem could very well be solved based on

the unique faculty social security number but certainly

it would be more helpful to include faculty names for

any output procedures.

With the scheduling process in mind, consider what

information is needed with respect to the faculty.

Clearly the social security number can act as a unique

identifier for each faculty member. As has been seen

their names should also be included. The address and

telephone number for each faculty member would also be

helpful. Items necessary for the scheduling process

include the maximum number of courses each faculty

139

www.manaraa.com

140

member can teach in a semester as well as the times each

faculty member is not available to teach. In order to

address the issue of which faculty members are better

suited to teach a yiven class some mechanism should be

maintained whereby discipline can be determined. Also

included should be an indication of what classes a yiven

faculty member is assigned to teach. Lastly it would be

advantayeous to maintain information pertaining to both

active and inactive faculty members. In this way the

department can maintain information on faculty members

who do not necessarily teach every semester. The diagram

in Fiyure 48 shows the data items needed to represent

faculty information as well as the relationships that

exist amony these data items. A single arrow indicates

a functional dependency. For instance associated with

each social security number is one faculty name. A

double arrow indicates a one to many relationship. For

example associated with each discipline are one or more

faculty members capable of teaching a course in that

discipline. Note that the relationship from NAME to

SOCIAL SECURITY is one to many since it oculd be the

case that two or more faculty members could have the

same name. Hence that one name would be associated with

many social security numbers.

consider the relationships between TIME NOT

AVAILABLE and SOCIAL SECURITY NUMBER. The double arrows

www.manaraa.com

RELATIONSHIP AMONG FACULTY DATA ITEMS

Figure 48

141

www.manaraa.com

142

pointing from SOCIAL SECURITY NUMBER to TIME NOT

AVAILABLE imply that for each soical security number

there could be many time periods when that faculty

member is unavailable for teaching. In the opposite

direction the double arrows pointing from TIME NOT

AVAILABLE to SOCIAL SECURITY NUMBER indicate that tor

each time period there could be many faculty members who

are not available at that time. It can be said that the

relationship between TIME NOT AVAILABLE and SOCIAL

SECURITY NUMBER is a many to many relationship.

With respect to the classes scheduled a unique

identifier is needed to distinguish a particular

scheduled class from another. An obvious choice would

be the university's course code. This ten character

field is defined as follows:

Character

1 -
3

4 - 6

7 - 10

Division (MAT, STA, CSC)

3 digit course number

3 digit section number followed

by E if evening class

Using this course code day section 5 of Computer science

201 would be listed as 'CSC201005 ' Note that the last

character, a space, denoting that the class is not an

evening class is necessary since evening sections are

www.manaraa.com

143

numbered the same as day sections. Note that this class

code is really the concatentation of several pieces of

information, the division designator, the course number

and the section. All three are needed to uniquely

identify the course. In addition to this the time of

day and the days of the week the course is offered must

also be maintained. In the same way that the inclusion

of faculty names in the system is helpful, the course

title should be listed. Lastly the dicipline or special

field the course covers should be included.

The diagram in Figure 49 lists the data needed to

represent class information and the relationships

between those data items. Note that two bubbles

actually contain the department and course number data,

since that information is included in the class code.

It could be argrued then that the DIVISION + NUMBER

bubble is not needed. Recall however that the class

code is the university's mechanism for representing only

those courses being offered in a given semester.

Without the DEPARTMENT + NUMBER bubble the system would

have not way of maintaining information pertaining to a

specific course if that course was not offered in a

given semester. consequently both bubbles should be

included.

It is also true that the title of the course can be

www.manaraa.com

RELATIONSHIPS AMONG CLASSES DATA ITEMS

Figure 49

144

www.manaraa.com

determined from the class code. Perhaps then a link

should be drawn between the CLASS CODE and TITLE

bubbles. While the relationship would certainly be

valid it would also be redundant. Since it has been

determined that the DEPARTMENT + NUMBER bubble must be

included, yiven a class code, the department and number

can be determined and hence the course's title. The

same argument can be made concerning relationships

between CLASS CODE and DISCIPLINE.

Figures 48 and 49 can now be Joined together over

their common data items to give a picture of all the

data items in the system and how they are related to

each other (Figure 50).

CONSTRUCTING THE LOGICAL VIEW

145

usiny the relationships shown in Figure 50 the

logical view of the data base system can be derived.

Note that formal definitions have not yet been given for

data items in the bubbles. once it is known what the

relations will be a precise definition of each attribute

can be derived.

Consider the functional dependency between SOCIAL

www.manaraa.com

146

RELATIONSHIPS AMONG ALL DATA ITEMS

Figure 50

www.manaraa.com

SECUHITY NUMBER and ADDRESS. Clearly each social

security number will uniquely determine one address that

is associated with that social security number. The

social security number then is acting as a key in a

relation. In general any bubble that originates a

functional dependency can serve as a key for a relation.

Any bubble that orginates a one to many relationship is

providing information about an entity but does not

uniquely identify it. It then can serve as a nonkey

attribute in a relation.

147

The SOCIAL SECURITY NUMBER could be the key of a

relation with attributes MAX#_CLASSES, NAME, ACTIVE,

ADDRESS, TEL# and DISCIPLINE. Note however that these

attributes can be grouped into two categories, those

dealing with personal information about the faculty

member and those dealing specifically with the

scheduling problem. In order then to reflect more

closely the actual meaning of the data the following two

relations will be used:

PERSONAL

NAME ADDRESS TEU ACTIVE 1

FACULTY

MAX#_CLASSES DISCIPLINE 1 •

www.manaraa.com

Consider now the many to many relationship between

SOCIAL SECURITY NUMBER and TIME NOT AVAILABLE. Since

neither bubble orginates functional dependency neither

can serve as a key. In order to build a relation then a

modification in the relationships can be made.

MODIFICATION OF SS# AND TIME NOT AVAILABLE RELATIONSHIP

Figure 51

It can be verified that the new relationship in

Figure 51 provides the same information as the original.

For instance given a social security number, there will

be many SS# + TIME NOT AVAILABLE fields associated with

it. In each of these fields however, the social

security number will be the same. Consequently there

are many times associated with that social security

number. Now SS# + TIME NOT AVAILABLE acts as a key of a

relation since this bubble orginates a functional

148

www.manaraa.com

dependency. The following relation then can be used.

NOT_AVAIL

SS# TIME)

In the relationships that deal with classes the

following two relations can be used.

SCHEDULE

NUM TIME SS#)

CLASSES

NUM TITLE DISCIPLINE)

Note rather than use class code the actual values that

make up that code, DIV, NUM, and SEC are used to be

consistent with their individual uses elsewhere.

Each of the relations derived can be formally

defined. In some cases modifications can be made to

more accurately present the data and clear up any

ambiguities.

PERSONAL

Only a general understanding has been given for the

ACTIVE attribute. This yes or no value will indicate

whether a faculty member is currently employed by

149

www.manaraa.com

the Department of Mathematical sciences. A faculty

member on sabbatical in a given semester,.for instance,

sould still be employed by the department but would

teach no courses that semester. The ACTIVE value for

that faculty member would be yes but MAX#_CLASSES in the

relation FACULTY would be 0. In order to maintain for

instance a mailing list of all former employees the

tuples with an ACTIVE value ot no are maintained.

150

With respect to the attribute ADDRESS it could be

argued that it would be more flexible to list seperately

the street, city, state and zip code for each faculty

member. In that way to find all employees who live in

Richmond say, a select can be made on the CITY

attribute.

PERSONAL can be redefined then as

PERSONAL

SS# NAME STREET CITY STATE ZIP TEL# ACTIVE]

FACULTY

In this relation the attribute discipline needs to

be more clearly defined. Recall that this attribute

will be used to distinguish faculty members best suited

to teach a particular course. Within the Department of

www.manaraa.com

Mathematical Sciences there are several special areas of

expertise. These special fields include, tor example,

Applied Mathematics, Pure Mathematics, Operations

Research and Theoretical Computing. Of course many of

the courses offered by the department fall into much

more general categories. An example would be Calculus

which could be taught by virtually anyone in the

department. In this case the special field could be the

same as the division.

In order then to reflect more clearly the expertise

of each faculty member the attribute can be broken up

into two attributes. The first DIV will list the

division the faculty member is associated with, either

MAT, STA or esc. The second attribute DISCIPLINE will

list a special field such as Applied Mathematics in

which the faculty member is qualified to teach.

FACULTY then can be redefined as

FACULTY

NOT AVAIL

SS� MAX�_CLASSES DIV DISCIPLINE]

A thorough description must be made of the times

when a faculty member is unavailable. Not only must a

time of day be listed but the day of the week as well

151

www.manaraa.com

152

since a faculty member may be unavailable at different

times on different days.

With respect to the actual time of day it would be

advantageous to consider the beginning and ending times

that a faculty member is unavailable. In this way the

user will have a more straightforward mechanism on which

to query. For instance in order to find faculty members

unable to teach from H:OO to 9:00 tuples could be

selected where the beginning of the unavailable time is

less than or equal to 9:00 and the end is greater than

8:00.

The days of the week referred to could be

representd by a character string consisting of 'MTWRF'

where the days not applicable are blanks.

SCHEDULE

NOT AVAIL

SS# BEG TIME END TIME DAYS

In this relation, as in NOT_AVAIL, the time

attribute must be reconstructed. In order to be

consistent the same strategy will be used.

Recall now that in the initial development of, say,

the Fall semester's course schedule the previous year's

www.manaraa.com

153

Fall schedule is used as a basis. It would be

advantageous then to include an attribute in this

relation indicating whether the course scheduled is for

a Fall or Spring semester. In that way the next year's

schedule can be built from the previous year's by merely

updating the particular semester's tuples. Note however

that a given section of a course may be offerd in each

semester at the same time. Consequently the semeseter

attribute must be a part of the key.

SCHEDULE

DIV NUM SEC SEMESTER BEG END DAYS SS#]

CLASSES

Note that this relation contains the discipline

attribute which was defined in the development of

FACULTY.

CLASSES

DIV

Integrity Rules

NUM TITLE DISCIPLINE]

When formally defining the logical design of a data

base not only must each attribute be defined and the

www.manaraa.com

keys s�ecified but any integrity rules concerning the

relations must be clearly specified so that later they

can be supported by the data manipulation language.

Consider the relations dealing with the faculty.

Clearly if a faculty member is listed as active in

PERSONAL a tuple should be included in FACULTY providing

scheduling information about that faculty member.

conversely if a faculty member is listed in FACULTY a

tuple should exist concerning that faculty member in

PERSONAL.

154

With respect to classes scheduled, if a class's

information is included in SCHEDULE clearly it should be

listed in CLASSES. The converse this time is not true

however since it could be the case that a course is

offered so infrequently that it is not listed in the

SCHEDULE relation.

Default Values

As has already been discussed in Chapter 5 not

every attribute value will necesarily be known when it

becomes convenient to enter tuples in a relation. By

definition an attribute which serves as a key may not

accept default values. In certain other cases it might

be benefical to the system to guarantee that an actual

value is entered and specifically disallow default

www.manaraa.com

155

values. Consider for instance the attribute NAME in

PERSONAL. Clearly if the faculty's name is unknown it

indicates that very little is known about that faculty

member. Consequently in order to insure that enough

information about the faculty member is availablle a new

tuple will not be accepted unless a name is entered. In

some cases attribute values are directly used in the

scheduling process. For example the attribute ACTIVE in

PERSONAL must be entered since the scheduling appliction

programs will be applied to active facutly members only.

A similar argument can be made about MAX#_CLASSES and

DISCIPLINE in FACULTY, and any attributes dealing with

times in SCHEDULE.

In one case an allowable default value will have a

special meaning. Consider the ss� attribute in

SCHEDULE. Until a class has been assigned to a faculty

member the default value can signify that the class

still needs to be assigned.

A formal presentation of the logical design of the

data base is listed in APPENDIX A as part of the Data

Dictionary. Included is the definition of each

relation, the domains for each attribute in the relation

including allowable default values and the integrity

rules.

www.manaraa.com

VERIFYING THE LOGICAL DESIGN

Recall that normal form theory provides a method by

which the soundness of the data base's logical design

can be verified. Without this verification

unpredictable, inaccurate results could be generated

through the use of the data base.

In order to apply normal form theory the relation's

functional dependencies should be clearly defined. Each

relation has been designed so that each nonkey attribute

is functionally dependent on the key. care must also be

taken however to identify any dependencies that exist

among the nonkey attributes.

functional Dependencies in the Relations

FUNCTIONAL DEPENDENCIES IN FACULTY RELATION

Figure 52

It could be argued that DISCIPLINE determines the

DIVISION. A faculty member for instance whose

156

www.manaraa.com

speciality is Pure Math is clearly associated with MAT

division. Consider however the speciality Numerical

Analysis. It could be that Computer Science and

Mathematics faculty members have expertise in this

field. Consequently the two attributes must remain

independent.

MAX#_CLASSES depends strictly on the faculty

member's status each semester and is hence independent

of all the other nonkey attributes.

NOT AVAIL FUNCTIONAL DEPENDENCIES

Figure 53

since the entire tuple is the key of NOT_AVAIL

there are no other functional dependencies to consider.

SCHEDULE FUNCTIONAL DEPENDENCIES

Figure 54

157

www.manaraa.com

In many cases the days and the beginning time a

class meets determines the ending time. for instance

evening classes that start at 19:00 end at 20:15. There

are however exceptions to these rules and consequently

it must be assumed that these three attributes are

independent. Also who teaches a course is generally

independent of when that class meets. Therefore no

dependencies exist among the nonkey attributes.

CLASSES FUNCTIONAL DEPEND�NCIES

Figure 55

since the title of a course may be ambiguous the

course's discipline can not be inferred from it. TITLE

and DISCIPLINE are therefore independent.

158

www.manaraa.com

PER�ONAL FUNCTIONAL DEPENDENCIES

Figure 56

In the case of PERSONAL there are definite

dependencies among the nonkey attributes. Clearly a

given zip code determines a state and also a city. The

combination of Street, state and City determines a zip

code as well. These nonkey dependencies could be

avoided if the address was contained in one attribute.

The flexibiility, however, of selecting on any

particular one of these fields would be lost.

The ramifications of these nonkey attribute

functional dependencies will be seen as the relations

are tested against each of the five normal forms.

First Normal Form

159

By examining the data dictionary it can be verified

that each attribute will only accept a single value from

www.manaraa.com

its domain. A set of values for an attribute will not

be accepted in any instance. Consequently all of the

relations satisfy first normal form.

second Normal Form

In the relations SCHEDULE and CLASSES which have

multiple attribute values as the key it can be easily

verified that the entire key is necessary in determing

any nonattribute value. For instance in CLASSES the NUM

value alone does not determine a class's title since

multiple divisions could offer courses with the same NUM

value.

All the relations satisfy second normal form.

Third Normal Form

By lookiny at Figure 56 it can be seen that STATE

for instance is functionally dependent on the key as

well as on ZIP. conse4uently PERSONAL does not satisfy

third normal form. All other relations however do not

contain any functional dependencies among the nonkey

attributes and hence do satisfy third normal form.

Boyce/Codd Normal Form

Since in all the relations excluding PERSONAL the

only determinants are the actual keys of the relation

they all satisfy Boyce/Codd normal form.

In PERSONAL however ZIP is a determinant since its

160

www.manaraa.com

value will determine other attribute values. ZIP

clearly is not a candidate key for this relation.

PERSONAL then does not satisfy Boyce/Codd Normal form.

Fourth Normal Form

Recall that in order to have a multivalued

dependency A->->B in R{A,B,C), there must be a set of B

values matching a given {A,C) pair in R depending only

on the A value and independent of the c value. Note

OR

MULTIVALUED DEPENDENCIES

Figure 57

in Figure 57 that there is no relationship between the B

and c attributes.

Since all of relationships from the key to a nonkey

attribute are functional dependencies there are no

multivalued dependencies originating from the key.

Consider, however, relations where a set of attributes

forms the key. Any multivalued dependencies between

these attributes that form the key must be identified.

161

www.manaraa.com

Since FACULTY has a single attribute as its key

th�s relation has no multivalued dep
.
endencies and hence

satisfies fourth normal form. The key of SCHEDULE is

formed by the combination of the DIV, NUM, SEC, and

SEMESTER attributes. The relationships among these

attributes are shown in Figure 58.

KEY ATTRIBUTE RELATIONSHIPS IN SCHEDULE

Figure 58

Every attribute is dependent on every other attribute.

For instance for each course number there will be many

DEPT, SEC and SEM values associated with it. Clearly

none of the attributes are independent of any others and

no multivalued dependencies exist.

A similar argument can be made for CLASSES and

NOT AVAIL. Therefore all of the relations, excluding

PERSONAL satsify fourth normal form.

Fifth Normal Form

Since in PERSONAL the ZIP determines the CITY and

STATE this relation can be reconstructed by joining the

162

www.manaraa.com

relations shown in Figure 59 over ZIP.

R

s

ZIP

NAME STREET ZIJ:> TEL# ACTIVE]

CITY STATE]

POSSIBLE DECOMPOSITION OF PERSONAL

figure 59

Since ZIP is not a candidate key for PERSONAL it fails

to satisfy fifth normal form.

With respect to the remaining relations it is a

nontrivial task to find all the join dependencies in the

set of relations. Clearly there are several since at

the very least each relation could be decomposed into a

set of binary relations composed of the key and one

nonkey attribute. Of course the key of each of these

binary relations is the key of the original relation so

these Join dependencies do not imply that fifth normal

form is violated.

When a relation is presenting interrelated multiple

facts extra care should be taken in examining the join

163

www.manaraa.com

dependencies. FACULTY is providing several pieces of

unreleated information. In NOT_AVAIL the single piece

of informtion presented by each tuple is a time period a

faculty member is unavailable to teach. None of the

attributes or combinations of them determine any

remaining attribute values or combination of them.

Similar arguments can be made concerning SCHEDULE and

CLASSES.

It can be safely stated therefore that all the

relations, excluding PERSONAL, satisfy fifth normal

form.

PERSONAL's Failure to satisfy the Normal Forms

164

It has been shown tht all of the relations

excluding PERSONAL satsify the five normal forms. Their

logical design has therefore been shown to be sound.

Consider PERSONAL and the known abnormalities associated

with its failure to satisfy the normal forms.

The entire problem with the PERSONAL relation

revolves around the dependencies that orginate from the

ZIP attribute. Abnormalities that could occur involve

the zip code values. For instance if the zip codes were

changed a sequential search would have to be made for

every occurance of each code and each updated. Also if

a faculty tuple was deleted it could be that a city

www.manaraa.com

and zip code relationship will be deleted that is not

listed anywhere else in the data base. These

abnormalities are not a problem however. The chances

that the zip code will be changed are few and there is

really no value of having the data base contain a

certain zip code city relationship. Consequently while

these dependencies do in reality exist they can be

ignored. It can be verified that if the dependencies

originating from ZIP are eliminated PERSONAL satisfies

all five normal forms.

THE PHY�ICAL DESIGN

In order to design the physical level of the data

base consideration had to be given to the computer

system on which the data base management system will

operate.

Currently at Virginia Commonwealth Univeristy an

IBM 30810 is used. Batch and interactive processing are

both available but the batch environment is much more

widely used, more familiar and less costly. Also

available is the WYLBUR interactive text editing

procedure language. Through this command language many

of the updating, inserting and deleting operations can

be preformed interactively on sequential text files.

The data base will operate in a batch environment but

165

www.manaraa.com

simulate an interactive environment whenever possible.

This interactive capability is very important in

providing the most user friendly and flexible method of

updating and modifying the files.

166

While the speed of operation is always a

consideration when designing a data base system, in this

case it will play a much smaller role. Generally the

speed at which the interactive portion of the system

will operate will depend most heavily on the number of

users on the univeristy's computer system at the time an

interactive command is given. The batch portion of the

system will also depend on this factor since before a

JOb is executed it must wait on a job queue, the size of

which will depend on the number of users submitting jobs

at that time. consequently, the speed at which the

operations are performed will depend heavily on factors

outside the data base system's control.

The entire data base system will reside under a

single account. There will be several users who can

access this account but only.one at a time. Therefore

concurrent accessing of data is not an issue.

With respect to the actual design of the physical

files that will be used, the most straighforward

approach is to consider one physical file for each

logical relation. In order to avoid confusion the same

names will be used for both the logical relations and

www.manaraa.com

167

their corresponding physical file. As has already been

mentioned the response time of the data base system will

depend on factors extraneous to the actual data base's

design. It would be helpful however if the files were

designed in such a way so that this problem would not be

worsened by inefficient data structures. several tests

were therefore performed so that various data structures

could be ranked with respect to the length of time it

took to perform a set of given operations. A sample

data collection was developed which contained 75, 80

character records (there are approximately 75 active

faculty members) each containing a social security

number, a name and an address. This sample data was

then set up in various file designs and tested. Besides

noting the time it took to set up the data structure two

programs were run on each structure developed. The

first searched for six records with specified social

security numbers. The second searched for all records

which contained a specified value in a nonkey field. In

both cases the CPU time it took to execute the programs

was noted. Not included in this time was any delay due

to queueing.

Since each relation contains a key which

distinguishes one tuple from any others a natural

approach would be to design the file corresponding to

the relations so that it indexed in some way on the key.

www.manaraa.com

In the sample data the social seurity number could serve

as the unique identifier for each record.

Initially an I�AM file was set up and tested. A

major drawback to this structure is that on this

168

particular operating system a minimum of one cylinder or

30 tracks of storage has to be allocated for each ISAM

file. Clearly the 75 records in the sample data would

not need that much space and in fact can reside on only

one track.

various hashing methods were then considered. A

typical division on the key method, mod 79, was first

tested for determining the record's address. A table of

size 110 was chosen to allow for 45% excess space in

order to provide for multiple keys mapping to the same

location. Collisions were dealt with in several ways.

First a simple linear insert was tested. A double

hashing function was also tested where if on the second

hash a collision occurred a linear insert was performed.

The last test was to use a linked list to hold those

records that collided at a specific index.

Another hash method which was also tested involved

using the 4th and 5th diyits of the social security

number. since these two digits were thought to be

random they were used as the index into the table.

"i1al!'i:<!)US ,cellision methods were applied in this case
.

..,.

www.manaraa.com

also.

Lastly a simple sequential file was tested. In

this case no order was assumed and no direct accessing

available.

The data in Table 2 summarizes the results of the

tests run.

TABLE 2

COMPARISON OF EXECUTION TIMES IN SECONDS ON

r'ILE
TYPE

ISAM

sequential

VARIOUS DATA STRUCTURES

J:o'ILE
SETUP

1.04

.09

SEARCH fOR 6
KEY VALUES

1.15

l. 32

SEARCH FOR ALL
OF NONKEY VALUE

1.05

.99

Hashing - Division Method

Linear Inserts 1.15 1.22 • 92
Linked Inserts 1.16 l. 58 .94
Double Hashed 1.19 1.36 .93

Hashing - 4th and 5th Digits of social security number

Linear Inserts 1. 20 1.24 • 9 2

Double Hash 1. 25 1.33 .93

While the ISAM file certainly performed marginally

169

faster when searching on a key value the excessive space

www.manaraa.com

required to hold the file clearly outweighs this slight

advantage. Another disadvantage is an ISAM file's

inability to be accessed dircectly by the interactive

WYLBUR procedures. Therefore ISAM files were not

considered further.

170

With respect to the hashing methods used versus the

sequential design there is really not much difference in

the times shown. This is because the usual advnatages

the hashing tables provide do not become apparent until

the files searched become much larger. Since the size

of tiles in the data base will generally be small this

was an important consideration.

Besides being more difficult to program and

therefore more prone to error the linked list method of

inserting in a hash table provided no advantage in

searching times. similarly the double hashing method

did not show any advantage by its use. These two

methods were therefore also no longer considered. Note

also that the two digit method of hashing provided no

improvement over the division method. Since the division

method is the more straightforward the two digit method

was dropped from further consideration.

While the sequential file structure does indeed

www.manaraa.com

require slightly longer search times then the hashing

method there are some advantages of this design to

consider. Clearly of the two the sequential design is

the simplSst to program and maintain. While WYLBUR

would indeed be able to access either file structure, in

the case of the hashed file, each time an interactive

insertion session is completed a batch program would

have to be run to insure that any records inserted are

placed at their correct address. WYLBUR provides no

straightforward mechanism for determining a record's

correct hashed location and then inserting it there.

This extra program execution would cause an undesirable

complication to the interactive processing. Inserting a

record into a sequential file however would merely

require writing it to the end of the file.

In order to make a decision on the file structures

chosen consideration was given to the types of activity

for which the user would require the quickest response

time. Clearly the interactive portion must be the

quickest since when submitting a batch job a delay is

expected. Also since users will generally be

inexperienced with the computer the interactive sessions

must be as straightforward as possible. Therefore in

order to meet these criteria and since the time loss is

not significant the sequential design was chosen as the

171

www.manaraa.com

initial file structure for the data base. As the data

base grows these structures can certainly change in

order to provide the most efticient system.

172

For each logical relation a physical sequential

file will be built. In most cases the record definition

will mirror the relation's tuple definition. Of course

the particular field definition must be much more

precise. For instance the field DISCIPLINE must be

limited to say 20 characters. Recall, however, that it

is not necessary for the record's field value to match

the logical attribute value. Consider the BEG TIME and

END TIME field. In most cases comparisons over a range

will be made on these fields. A search might be made

for instance for faculty members who are available from

10:00 to 11:00 on specified days. Clearly it would be

difficult to consider a range of times on these 5

character values. Theretore any times stored will be

converted to an integer representing the number of

minutes from midnight for each time. 10:00 then would

be stored as 600. The user of course will be oblivious

to this conversion and therefore the data manipulation

language and any application programs will take this

connversion into account. In order to make the best use

of the WYLBUR interactive capabilities all data will be

stored as character strings and converted to integers

www.manaraa.com

when necessary.

Listed in the Data Dictionary in Appendix A is the

actual definition of the physical data base.

173

www.manaraa.com

174

DESIGN IMPLEMENTATION

The relational data base described in the previous

sections will be implemented on one account through a

series of menu driven procedures. The user need only be

familiar with the logical view of the data base and the

relational operators. The WYLBUR command language will

be used to yenerate the interactive menus and also to

allow the user to interactively update relations and

build programs to perform the relational operations in a

batch mode. The actual programs will be written in PL/I

for its ease ot file accessing. various files will

reside on this account and can be categorized as either

data files, WYL�UR execute files or PL/I proyram files

(Figure 60).

Included in the set of data files will be the

physical sequential files representing the relations

composing the logical view of the data base. These will

be referred to as the standard relations. Of course the

user should have the ability to yenerate new relations

and save them for later reference so for each of these

user developed relations a physical sequential file will

be generated. Now in order to clearly define the

physical record representing the logical tuple in each

relation a file will be maintained which will include

for each standard and user developed relation a PL/I

www.manaraa.com

175

CONTENTS OF DATA BASE ACCOUNT

Figure 60

www.manaraa.com

record definition. These record definitions will be

copied by WYLBUR into PL/I programs which will access

the correspondin� file.

176

The WYLBUR command language files can be classified

into the groups shown in Figure 60. Menus will be used

to prompt the user for courses of action from the time

the user logs on to when he logs off. For each standard

relation a WYLBUR execute file will allow the user to

modify the relation. The user will be allowed to

insert, delete, or update tuples within the constraints

defined by the data dictionary. Another WYLBUR execute

file will prompt the user for various portions of the

scheduling problem. This WYLBUR execute file is really

separate from the relational data base design and can be

considered the tirst of what could be several

appli�ation oriented WYLBUR exec files. The last set of

WYLBUR execute files noted will allow the user to build

PL/I programs which will perform any relational

operation desired. Of course the user will be oblivious

to the PL/I aspect of this operation and will only

answer a series of prompts which will determine the PL/I

code WYLBUR will generate and then insert into a core

PL/I program.

Many of the PL/I programs run will be developed by

WYLBUR and built from the core program. This core

program will contain a constant set of JCL, a subroutine

which will print generated relations and a call to this

www.manaraa.com

177

subroutine. Another file will contain the outlines of

the subroutines which will perform the relational

operations. A set of application programs pertaining to

the scheduling system will also initially reside in the

account and will be run through WYLBUR execute files.

In order to develop algorithms for the various

portions of the system it would be helpful to consider

the flow of control as the user logs on and proceeds

through the various options available.

Logging On

Whenever any user logs on to this account the

WELCOME TO THE MATH SCIENCES DATA BASE SYSTEM

OPTIONS

A. MODIFY A STANDARD RELATION

B. BUILD A NEW RELATION

C. DELETE A NONSTANDARD RELATION

D. APPLICATIONS

E. SCHEDULING SYSTEM

F. LOG O�F

ENTER ONE OF THE ABOVE OPTIONS -->

LOGIN MENU

Figure 61

www.manaraa.com

system will automatically execute a login command file.

This command file then will �resent the main menu shown

in Figure 61 and prompt the user for a course of action.

consider now the implementation of each of the

options listed.

Modify a Standard Relation

If the user enters A a new menu will be presented

listing each of the standard relations and prompting the

user for which relation is to be modified. Control will

then be passed to the appro�riate command file which

will allow the user to modify that relation. There will

be one procedure for each standard relation. The

algorithm listed in Appendix B defines the execute file

which will allow the user to modify the PERSONAL

relation.

178

Note that the integrity rules listed in the data

dictionary are all enforced. For instance, if the

ACTIVE value becomes no through an update any records in

FACULTY or NOT AVAIL are deleted and SS# in SCHEDULE is

set to blank.

The WYLBUR procedures to modify each of the other

standard relations will be similar.

www.manaraa.com

Build a New Relation

The user has the option to use one of the

relational operators to build a new relation. only one

operator can be used at a time but the user has the

option of saving the generated relation and then

applying another operator on that relation. This

process can be repeated allowing the user to apply

several operators.

179

As the user answers various prompts an executable

program which will perform the desired operation will be

built within the core program described earlier. The

appropriate subroutine will be copied into the core and

then updated as the user answers various prompts.

Record definitions for the necessary standard relations

will be copied from the data defintion file into the

core and a record definition for the operand relation

built. JCL for the operand standard relation files and

the output relation file will be put into the core. A

partially built program which will perform a select is

shown in Figure 62. Capital letters indicate a fixed

PL/I command and small letters indicate code that will

be updated with information provided from the user

through prompts.

Appendix B lists algorithms for the WYLBUR command

file which will build the executable SELECT program.

Also included in this appendix are the algorithms used

to perform the relational operators.

www.manaraa.com

1/JCl (to run PL/I program)

CORE: PROCEDURE OPTIONS (MENU);
DECLARE

l in reel
l out rec
file declarations
SYSPRINT FILE STREAM;

CALL SELECT;
CALL PRINT_OUT;

SELECT: PROCEDURE;
DECLARE

EOF BIT(l);
EOF='O'B;
ON ENDFILE (infile)EOF='l'B;
OPEN FILE (infile) INPUT;
OPEN FILE (outfile) OUTPUT;
READ FILE (infile) INTO (in reel);

LOOP: DO WHILE (EOF);
-

IF (condition) THEN
WRITE (outfile) out rec;

READ FILE (infile) INTO (in_recl);
END LOOP;
CLOSE FILE (infile);
CLOSE FILE (outfile);
END SELECT;

PRINT OUT: PROCEDURE:
DECLARE

EOF BIT(l);
EOF='O'B;
OPEN FILE (outfile) INPUT;
ON ENDFILE (outfile) EOF='l'B;
READ FILE (outfile) INTO (out rec);

LOOP: DO WHILE (EOF);
-

//Jcl

PUT (
END LOOP;
CLOSE FILE (outfile);
END PRINT_OUT;

END CORE;

(defininy files used)

SAMPLE PL/I PROGRAM

Figure 62

180

www.manaraa.com

Delete a Relation

The user may decide to delete any relations that

have been generated. ot course this does not include

the standard relations. The user will be prompted for a

nonstandard relation to be deleted. The corresponding

file will then be scratched.

Applications

If the user enters this option a menu will be

presented showing application programs available. This

list will vary with time but will initially contain an

option that will allow the user to request hard copies

of the data in each of the standard relations.

The ·user wi.ll be prompted for the relation to be

printed. A corresponding PL/I program will then be

submitted which prints the file with appropriate

headings and titles.

scheduling System

This set of WYLBUR execute files and PL/I programs

will mechanize the scheduling system described at the

beginning of this chapter. The process will mirror the

steps currently being handled manually.

The algorithms listed in Appendix B outline this

181

www.manaraa.com

process.

Logging Off

The user will enter this option when the data base

session is complete. The account will then be logged

off.

182

Another, hidden, option will be available for the

data base administrator and application programmers to

use. If this option is entered the programmer will exit

from the login menu and any WYLBUR execute files and

have access to all levels of the account.

www.manaraa.com

CONCLUSION

CHAPTER 8

The Department of Mathematical Sciences Scheduling

data base presented in Chapter 7 illustrates the use of

a data base environment through which a given problem

can be solved. In particular the use of a relational

data base system provides a logical design even the most

inexperienced user can understand and easily access.

While the implementation of this system will take

longer than a system designed to address only the given

problem its use will be much more flexible. By simply

quering the system, for instance, a mailing list of all

active faculty members can be generated. The data

maintained by the system then can be used in numerous

unanticipated ways making optimum use of the information

maintained.

Future expansion of the logical design can alsp be

www.manaraa.com

184

easily made. Suppose information was needed concerning

the text books used by each course. A relation would be

designed which maintained these textbook titles using

the course's number and division to identify the course.

The data manipulation language would be expanded to

provide for this new relation but existing applications

would continue to run without modification.

In addition, by maintaining all the department's

information in the data base system the danger of

inconsistent data is controlled and therefore minimized.

Any results derived from the system can be considered

accurate.

A relational data base environment then should be a

consideration when designing a computer system to solve

a recurring problem that requires interrelated data.

www.manaraa.com

APPENDIX A

LOGICAL DATA DICTIONARY

PHYSICAL DATA DICTIONARY

www.manaraa.com

BIBLIOGRAPHY

Aha, A. v., C. Berri, and J. D. Ullman, "The Theory of
Joins in Relational Databases" ACM Transactions on
Database Systems, Vol. 4, #3, September, 1979,
pp. 297-314.

Codd, E. F., "A Relational Hodel of Data for Large
Shared Data Banks" Communications of ACM, Vol. 13,
#6, June, 1970, pp. 377-387.

Codd, E. F., "Rational Database: A Practical Foundation
for Productivity" Communications of ACM, Vol. 25,
#2, February, l982, pp. 109�117.

185

Codd·, E. F., "Extending the Database Relational Model to
Capture More Meaning" ACM Transactions on Database
Systems, Vol. 4, #4, December, 1979, pp. 397-434.

Date, c. J., An Introduction to Database Systems, Volume
II, Reading, Massachusetts: Addison-Wesley
Publishing Company, 1983.

Date, c. J., An Introduction to Database Systems, 3d ed,
Reading, Massachusetts: Addison-Wesley Publishing
Company, 1982.

Kent, William, "A Simple Guide to Five Normal Forms in
Relational Database Theory" Communications of ACM,
Vol. 26, #2, February, 1983, pp. 120-125.

Martin, James, An End-User's Guide to Data Base,
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1981.

Martin, James, Managing the Data Base Environment,
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1983.

Martin, James, Computer Data Base Organization, 2d ed.,
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.,
1977.

Ullman, Jeffrey D., Principles of Database Systems,
Rockville, Maryland: Computer Science Press, 1982.

www.manaraa.com

186

PERSONAL

ATTRIBUTES: SS# social security number of faculty
member
Default: none

NAME Last name, First name
Default: none

STREET Street address of residence
Default: Dept. of Math. sciences

vcu

CITY City of residence
Default: Richmond

STATE Two letter state abbreviation
of residence

Default: VA
ZIP 5 digit zip code of residence

De fa u 1 t : 2 3 3 4 9

TEL# Residence telephone number
Default: 257-1301

ACTIVE Yes or No
Default: none

INTEGRITY RULES: 1. If ACTIVE is Yes then tuple must be
included in FACULTY with same SS#.

2. If SS# updated then SS# must be
updated in FACULTY and SCHEDULE.

3. If ACTIVE becomes No then tuples in
FACULTY and NOT_AVAIL deleted.

FUNCTIONAL DEPENDENCIES

r-------��

www.manaraa.com

FACULTY

I SSjf I MAX#_CLASSES DIVISION DICIPLINE

ATTRIBUTES: SS# social security number of
faculty member
Default: none

MAXjf_CLASSES Integer >= 0

Default: none
DIVISION MAT, STA, or CSC

Default: none
DISCIPLINE Allowable speciality

Default: Division value

187

INTEGRITY RULES: 1. For each tuple included there must
be a corresponding tuple in PERSONAL
with same SSjf and ACTIVE Yes.

FUNCTIONAL DEPENDENCIES

www.manaraa.com

188

NOT AVAIL

SS# BEG TIME END TIME I DAYS

ATTRIBUTES: SS#

BEG TIME

END TIME

DAYS

FUNCTIONAL DEPENDENCIES

social security number of
faculty member
Default: none
Beginning time on army
clock when faculty member
not available
Default: none
End time on army clock
when faculty member not
available
Default: none
MTWRF where letter is blank
when day not applicable
Default: none

www.manaraa.com

189

SCHEDULE

1 DIV I NUM SEC SEMESTER I BEG END I DAYS SS#

ATTRIBUTES: DIV MAT, STA, or CSC
Default: none

NUlvt

SEC

SEMESTER

BEG

t:ND

DAYS

SS#

Three digit catalog number of
course.
Default: none
Three digit section number
followed by E if evening
or blank if day class
Default: none
Spring, summer or Fall
Default: none
Army time of when class begins
Default: none
Army time of when class ends
Default: none
MTWRF when days class does not
meet are blank.
Default: none
Social security number of
faculty member teaching course.
Default: 1 1

INTEGRITY RULES: 1. For each DlV and NUM a tuple must be
included in CLASSES with same DIV and
NUM values.

2. Every SS# value must be listed in
FACULTY and PERSONAL with an ACTIVE
value of Yes.

FUNCTIONAL DEPENDENCIES

www.manaraa.com

190

CLASSES

I DIV I NUM I TITLE DISCIPLINE

ATTRIBUTES: DIV MAT, STA or esc

Default: none
NUM Three digit catalog number of

class.
Default: none

TITLE Title of course as listed in
catalog.
Default: none

DISCIPLINE One of allowable disciplines.
Default: Div value

INTEGRITY RULES: l. If DIV or NUM updated corresponding
values updated in SCHEDULE.

2. If tuple deleted then tuples in
SCHEDULE with same NUM DIV values
must be deleted.

FUNCTIONAL DEPENDENCIES

www.manaraa.com

191

PJ:::J{SONAL

FILE TYPE: Physical Sequential

RECORD DEFINTION:

11 ddd-dd-dddd

PERSON
SSlt
NAME
STREET
CITY
STATE
ZIP
TEL#
ACTIVE

Character
Character
Character
Character
Character
Character
Character
Character

25 last name, first name
20

FACULTY

15

2

5 ddddd

8 ddd-dddd

3 Yes or No

FILE TYPE: Physical Sequential

RECORD DEFINITION:

NOT AVAIL

TEACHER
SSlf
MAXlf CLASSES
DIVISION

DISCIPLINE

Character
Character
Character
Character

11 ddd-dd-dddd

1 integer value 0 -9

3 MAT, STA or CSC

20

FILE TYPE: Physical Sequential

RECORD DEFINITION:

TIME
SSlf
BEG TIME
END TIME
DAYS

Character 11 ddd-dd-dddd

Character 4 0 - 1440

Character 4 0 - 1440

Character 5

www.manaraa.com

192

SCHEDULE

FILE TYPE: Physical Sequential

RECORD DEFINITION:

SECTION
DIV Character 3 MAT, STA or esc
NUM Character 3 inteyer 100 - 999
SEC Character 4 integer 1 - 99

followed by I I or I El

SEMESTER Character 2 SP, FA, or su
BEG Character 4 0 - 1440

END Character 4 0 - 1440
DAYS Character 5

SSlt Character 11 ddd-dd-dddd

CLASSES

FILE TYPE: Physical Sequential

RECORD DEFINTION:

CLASS
DIV

NUM
TITLE
DISCIPLINE

Character
Character
Character
Character

3 MAT, STA or CSC
3 integer 100 - 999

40
20

www.manaraa.com

APPENDIX B

IMPLEMENTATION ALGORITHMS

www.manaraa.com

In order to be consistent with the WYLBUR practice of
using labels as line designators Ll, L2, etc. will be
used in a similar way.

ALGORITHM TO MODIFY PERSONAL RELATION

Ll: Present Personal Edit Menu

L2:

L3:

A. Insert a new faculty member
B. Delete a faculty member
c. Update a faculty member's data
D. Return to Main Menu

Prompt for option

If user enters option to insert faculty member
Prompt tor social security number - SS#
Search PERSONAL for SS#
If record not found then

Prompt for last name
If last name not blank then

Prompt for first name, street, state, zip,
telephone

Prompt user if Active or not
If not active then

Search FACULTY for SS#
If found then delete record
Search NOT AVAIL for SS#
While found delete record
Search SCHEDULE for SS#
While found set SS# in SCHEDULE to '

else if active then
Build record for PERSONAL
Write record to file PERSONAL
Prompt for MAX#_CLASSES, DIVISION,

DISCIPLINE
Build record for FACULTY
Write record to file FACULTY

Goto Ll

If user enters option to delete faculty member
Prompt user for last name, first name
search PERSONAL for that record
If found then

If correct record then
Delete record from PERSONAL
If ACTIVE value was Yes then

Goto L2

193

www.manaraa.com

If user enter option to update a record then
Prompt user for last name
search PERSONAL for record
If record found then

If correct record then
Allow user to update information
Build record
If SS# changed then

search PERSONAL for new SS#
If record not found then

Write record to PERSONAL
Update SS# in FACULTY, NOT_AVAIL,

SCHEDULE
If ACTIVE changed then

If now not active then
Goto L2

If now active then
Goto L3

If user enters option to return to main menu then
Execute Login Menu

194

www.manaraa.com

ALGORITHM TO EXECUTE SCHEDULING SYSTEM

Prompt user for semester they are working on

Prompt user if they are beginning a new schedule

If a new schedule then
Set ss# to blank in SCHEDULE for all records

with that semester value

Ll: Present scheduling System Menu
A. Print listing of current schedule
B. Assign faculty to class
c. Change classes scheduled
D. Print possible faculty assignments to

unassigned classes
E. Return to Main Menu

If user enters option to print current schedule
Edit PL/I program PRINTER so that semester

desired is printed.
submit PL/I program PRINTER that prints schedule

in grid format.
Print message to user to pick up printout.
Execute Login Menu

If user enters option to assign faculty to classes
Prompt user for class division, number and

section
Form key for SCHEDULE with input information
search for class record
If record found then

LS: Prompt user for faculty name
Search PERSONAL for name
If record found then

If correct record then

195

If Active value in PERSONAL is Yes then
write SS# from PERSONAL record to

SCHEDULE record
Write updated record to SCHEDULE

Goto Ll

If user enter option to change schedule then
Present Menu

1. Delete a class

2. Insert a class
3. Return to Scheduling Menu

www.manaraa.com

If user enters option to delete class then

Prompt user for class number, division and
section

Search SCHEDULE for class
If class if found then

Delete class

If user enters option to insert a class then
Prompt user for class number, division and

section
Prompt user for times and days class meets
Build SCHEDULE record
Prompt user if class is assigned
If class is assiyned then

Goto LS
If class is not assigned then

Write record to SCHEDULE

If user enters option to return to menu then
Goto Ll

196

If user enters option to print possible assignments
Edit PL/ I program GENERATE with semester value
Submit GENERATE which will find and print

possible faculty assignments noting any
that are better choices according to
scheduling criteria.

Print message to user to pick up printout.
Exec Login Menu

If user enter option to return to Main Menu
Exec Login Menu

www.manaraa.com

IMPLEMENTATION ALGORITHMS FOR

THE RELATIONAL OPERATORS

Let R, S denote physical files corresponding to

relations R[A1, • • • ,Anl and S[B1, • • • ,Bml

respectively.

Let R.AI denote the field of the physical record

defintion corresponding to Ai attribute of R.

Let T denote a physical file corresponding to output

relation T.

SELECT T = R Where A. = v
1

Record definition for T same as for R

While more records in R
Read record in R

End

If R.AI = v then
Write record to T

PROJECTION T[Ai,Aj, • • • ,Ak] = R[Ai,Aj, • • • ,Ak]

T's record defintion will be composed of

those fields from R corresponding to

attributes projected from R.

While more records in R
Read record in R
T.AI R.AI
T.AJ = R.AJ

T.AK = R.AK
Write new record to T

End

197

www.manaraa.com

UNION T = R UNION S

Record definition for T same as for R and s

While more records in R
Read record in R
write record to T

End
While more reocrds in s

Read record in s

Found is false

End

While more records in T and found is false
If records are equal found is true

End
If not found

Write record from s to T

INTERSECTION T = R INTERSECT S

MINUS

Record definition for T same as for R and S

While more records in R
Read record from R
Found is false

End

While more records in s and found is false
Read record from s

If records are equal
Write record to T
Found is true

End

T = R MINUS S

Record definition for T same as for R and s

While more records in R
Read record in R
Found is false

End

While more records in s and found is false
If records are equal found is true

End
If found is false

write record from R to T

198

www.manaraa.com

CROSS

JOIN

T[Al, ••• ,An,Bl, .•• ,Bm] = R[A1, ••• ,An] CROSS

S [Bl, ••• ,Bm]

Record definition for T will be composed of all

fields from R and s.

While more records in R
Read record in R

End

While more records in s

Read record in s

T.Al = R.Al

T.An = R.An
T.Bl = S.Bl

T.Bm = S.Bm
Write new record to T

End

T[Al, ••• ,Aj, ••• An,Bl, ••• ,Bk-l'Bk+l'•••Bm] =

R Join s where the join is over the

attribute A
J

, Bk subsets of the same

domain.

Record definition for T will be composed of all

fields from R and s excluding the Bk attribute

from s.

While more records in R
Read record in R
While more records in S

Read record in s

End
End

If R.AJ = S.BK then
T.Al = R.Al

T.An = R.An
T.Bl = R.Bl

T.Bk-1 = S.Bk-1
T.Bk+l = S.Bk+l

T.Bm = S.Bm
Write new record to T

199

www.manaraa.com

Vita

201

	Designing a Relational Data Base for a Problem Solving Environment
	Downloaded from

	daw_des_002_R
	daw_des_004_R
	daw_des_006_R
	daw_des_008_R
	daw_des_010_R
	daw_des_012_R
	daw_des_014_R
	daw_des_016_R
	daw_des_018_R
	daw_des_020_R
	daw_des_022_R
	daw_des_024_R
	daw_des_026_R
	daw_des_028_R
	daw_des_030_R
	daw_des_032_R
	daw_des_034_R
	daw_des_036_R
	daw_des_038_R
	daw_des_040_R
	daw_des_042_R
	daw_des_044_R
	daw_des_046_R
	daw_des_048_R
	daw_des_050_R
	daw_des_052_R
	daw_des_054_R
	daw_des_056_R
	daw_des_058_R
	daw_des_060_R
	daw_des_062_R
	daw_des_064_R
	daw_des_066_R
	daw_des_068_R
	daw_des_070_R
	daw_des_072_R
	daw_des_074_R
	daw_des_080_R
	daw_des_082_R
	daw_des_084_R
	daw_des_086_R
	daw_des_088_R
	daw_des_090_R
	daw_des_092_R
	daw_des_094_R
	daw_des_096_R
	daw_des_098_R
	daw_des_100_R
	daw_des_102_R
	daw_des_104_R
	daw_des_106_R
	daw_des_108_R
	daw_des_110_R
	daw_des_112_R
	daw_des_116_R
	daw_des_118_R
	daw_des_120_R
	daw_des_124_R
	daw_des_126_R
	daw_des_128_R
	daw_des_130_R
	daw_des_132_R
	daw_des_134_R
	daw_des_136_R
	daw_des_138_R
	daw_des_140_R
	daw_des_142_R
	daw_des_144_R
	daw_des_146_R
	daw_des_148_R
	daw_des_150_R
	daw_des_152_R
	daw_des_154_R
	daw_des_156_R
	daw_des_158_R
	daw_des_160_R
	daw_des_162_R
	daw_des_164_R
	daw_des_166_R
	daw_des_168_R
	daw_des_170_R
	daw_des_172_R
	daw_des_174_R
	daw_des_176_R
	daw_des_178_R
	daw_des_180_R
	daw_des_182_R
	daw_des_184_R
	daw_des_186_R
	daw_des_188_R
	daw_des_190_R
	daw_des_192_R
	daw_des_194_R
	daw_des_196_R
	daw_des_198_R
	daw_des_200_R
	daw_des_202_R
	daw_des_204_R
	daw_des_206_R
	daw_des_208_R
	daw_des_210_R
	daw_des_212_R
	daw_des_214_R
	daw_des_216_R
	daw_des_218_R
	daw_des_220_R
	daw_des_222_R
	daw_des_224_R
	daw_des_226_R
	daw_des_228_R
	daw_des_230_R
	daw_des_232_R
	daw_des_234_R
	daw_des_236_R
	daw_des_238_R
	daw_des_240_R
	daw_des_242_R
	daw_des_244_R
	daw_des_246_R
	daw_des_248_R
	daw_des_250_R
	daw_des_252_R
	daw_des_254_R
	daw_des_256_R
	daw_des_258_R
	daw_des_260_R
	daw_des_262_R
	daw_des_266_R
	daw_des_268_R
	daw_des_270_R
	daw_des_272_R
	daw_des_274_R
	daw_des_276_R
	daw_des_278_R
	daw_des_280_R
	daw_des_282_R
	daw_des_284_R
	daw_des_286_R
	daw_des_288_R
	daw_des_290_R
	daw_des_292_R
	daw_des_294_R
	daw_des_296_R
	daw_des_298_R
	daw_des_300_R
	daw_des_302_R
	daw_des_304_R
	daw_des_306_R
	daw_des_308_R
	daw_des_310_R
	daw_des_312_R
	daw_des_314_R
	daw_des_316_R
	daw_des_318_R
	daw_des_320_R
	daw_des_322_R
	daw_des_323_R
	daw_des_324_R
	daw_des_326_R
	daw_des_330_R
	daw_des_332_R
	daw_des_334_R
	daw_des_336_R
	daw_des_340_R
	daw_des_342_R
	daw_des_344_R
	daw_des_346_R
	daw_des_348_R
	daw_des_350_R
	daw_des_352_R
	daw_des_356_R
	daw_des_358_R
	daw_des_360_R
	daw_des_362_R
	daw_des_364_R
	daw_des_366_R
	daw_des_368_R
	daw_des_370_R
	daw_des_372_R
	daw_des_373_R
	daw_des_378_R
	daw_des_380_R
	daw_des_382_R
	daw_des_384_R
	daw_des_386_R
	daw_des_388_R
	daw_des_392_R
	daw_des_394_R
	daw_des_396_R
	daw_des_398_R
	daw_des_400_R
	daw_des_408_R
	daw_des_409_R
	daw_des_410_R
	daw_des_412_R
	daw_des_418_R
	daw_des_420_R
	daw_des_422_R
	daw_des_424_R
	daw_des_426_R
	daw_des_428_R
	daw_des_430_R
	daw_des_432_R
	daw_des_434_R
	daw_des_436_R
	daw_des_438_R
	daw_des_440_R
	daw_des_442_R
	daw_des_444_R
	daw_des_446_R
	daw_des_448_R
	daw_des_450_R

